DOI QR코드

DOI QR Code

Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors

  • 투고 : 2018.10.07
  • 심사 : 2019.03.24
  • 발행 : 2019.06.25

초록

The vortex-type fluidic diode (FD) is a key safety component for inherent safety in various advanced reactors such as the sodium fast reactor (SFR) and the molten salt reactor (MSR). In this study, topology optimization is conducted to optimize the design of the vortex-type fluidic diode. The optimization domain is simplified to 2-dimensional geometry for a tangential port and chamber. As a result, a design with a circular chamber and a restrictor at the tangential port is obtained. To verify the new design, experimental study and computational fluid dynamics (CFD) analysis were conducted for inlet Reynolds numbers between 2000 and 6000. However, the results show that the performance of the new design is no better than the original reference design. To analyze the cause of this result, detailed analysis is performed on the velocity and pressure field using flow visualization experiments and 3-D CFD analysis. The results show that the discrepancy between the optimization results in 2-D and the experimental results in 3-D originated from exclusion of an important pressure loss contributor in the optimization process. This study also concludes that the junction design of the axial port and chamber offers potential for improvement of fluidic diode performance.

키워드

참고문헌

  1. H. Zhang, H. Zhao, C.B. Davis, Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors, vol 01, 2008, pp. 1-8.
  2. D.E. Holcomb, S.M. Cetiner, G.F. Flanagan, F.J. Peretz, G.L. Yoder Jr., An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components, 2009, https://doi.org/10.2172/970926.
  3. G.L. Yoder Jr., Y.M. Elkassabgi, G.I. De Leon, C.N. Fetterly, J.A. Ramos, R.B. Cunningham, Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors, 2012, https://doi.org/10.2172/1036568.
  4. G.H. Priestman, A study of vortex throttles Part 1: experimental, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 201 (1987) 337-343, https://doi.org/10.1243/PIME_PROC_1987_201_132_02.
  5. Y. Chikazawa, K. Aizawa, T. Shiraishi, H. Sakata, Experimental demonstration of flow diodes applicable to apassive decay heat removal system for sodium-cooled reactors, J. Nucl. Sci. Technol. 46 (2009) 321-330, https://doi.org/10.1080/18811248.2007.9711537.
  6. A.A. Kulkarni, V.V. Ranade, R. Rajeev, S.B. Koganti, Pressure drop across vortex diodes: experiments and design guidelines, Chem. Eng. Sci. 64 (2009) 1285-1292, https://doi.org/10.1016/j.ces.2008.10.060.
  7. A.A. Kulkarni, V.V. Ranade, R. Rajeev, S.B. Koganti, CFD simulation of flow in vortex diodes, AIChE J. 54 (2008) 1139-1152, https://doi.org/10.1002/aic.11439.
  8. J. Yin, L. Jiao, L. Wang, Large eddy simulation of unsteady flow in vortex diode, Nucl. Eng. Des. 240 (2010) 970-974, https://doi.org/10.1016/j.nucengdes.2010.01.010.
  9. A. Pandare, V.V. Ranade, Flow in vortex diodes, Chem. Eng. Res. Des. 102 (2015) 274-285, https://doi.org/10.1016/j.cherd.2015.05.028.
  10. S. Shin, J.H. Jeong, D.K. Lim, E.S. Kim, Design of SFR fluidic diode axial port using topology optimization, Nucl. Eng. Des. 338 (2018) 63-73, https://doi.org/10.1016/j.nucengdes.2018.07.028.
  11. G.I.N. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Struct. Multidiscip. Optim. 21 (2001) 90-108, https://doi.org/10.1007/s001580050174.
  12. T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Fluids 41 (2003) 77-107, https://doi.org/10.1002/fld.426.
  13. C. Othmer, E. De Villiers, H. Weller, et al., Implementation of a continuous adjoint for topology optimization of ducted flows, 18th AIAA Comput, Fluid (2007) 1-7, https://doi.org/10.2514/6.2007-3947.
  14. S. Lin, L. Zhao, J.K. Guest, T.P. Weihs, Z. Liu, Topology optimization of fixed-geometry fluid diodes, J. Mech. Des. 137 (2015), https://doi.org/10.1115/1.4030297, 081402.
  15. G.H. Yoon, Topology optimization for turbulent flow with Spalart-Allmaras model, Comput. Methods Appl. Mech. Eng. 303 (2016) 288-311, https://doi.org/10.1016/j.cma.2016.01.014.
  16. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM J. Optim. 12 (2002) 979-1006, https://doi.org/10.1137/S1052623499350013.
  17. COMSOL, Opitmization Module User'guide Version 5.1, Comsol, Burlington, MA, USA, 2015.
  18. COMSOL, Optimization of a Tesla Microvalve, Comsol, Burlington, MA, USA, 2015.
  19. M.S. Song, S.H. Park, E.S. Kim, Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape, Fusion Eng. Des. 109-111 (2016) 596-601, https://doi.org/10.1016/j.fusengdes.2016.02.039.
  20. M.S. Song, H.Y. Choi, J.H. Seong, E.S. Kim, Matching-index-of-refraction of transparent 3D printing models for flow visualization, Nucl. Eng. Des. 284 (2015) 185-191, https://doi.org/10.1016/j.nucengdes.2014.12.019.
  21. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598-1605, https://doi.org/10.2514/3.12149.
  22. V.C. Patel, W. Rodi, G. Scheuerer, Turbulence models for near-wall and low Reynolds number flows - a review, AIAA J. 23 (1985) 1308-1319, https://doi.org/10.2514/3.9086.
  23. F.S. Lien, W.L. Chen, M.A. Leschziner, Low-Reynolds-Number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations, in: Eng. Turbul. Model. Exp, Elsevier, 1996, pp. 91-100, https://doi.org/10.1016/B978-0-444-82463-9.50015-0.

피인용 문헌

  1. A Review of Topology Optimisation for Fluid-Based Problems vol.5, pp.1, 2019, https://doi.org/10.3390/fluids5010029