References
-
S. Hosakawa, K. Hyashi, A. Tomiyama, Void distribution and bubble motion in bubbly flows in a 4
${\times}$ 4 rod bundle. Part I: Experiments, J. Nucl. Sci. Technol. 51 (2) (2014) 220-230. https://doi.org/10.1080/00223131.2013.862189 - A. Tomiyama, Y. Nakahara, Y. Adachi, S. Hosokawa, Shapes and rising velocities of single bubbles rising through an inner subchannel, J. Nucl. Sci. Technol. 40 (3) (2003) 136-142. https://doi.org/10.1080/18811248.2003.9715343
- R.H.S. Winterton, J.S. Munaweera, Bubble size in two-phase gas-liquid bubbly flow in ducts, Chem. Eng. Process 40 (2001) 437-447. https://doi.org/10.1016/S0255-2701(00)00142-2
- T. Hibiki, R. Situ, Y. Mi, M. Ishii, Modelling of bubble-layer thickness for formulation of one-dimensional interfacial area transport equation in subcooled boiling two-phase flow, Int. J. Heat Mass Transf. 46 (2003) 1409-1423. https://doi.org/10.1016/S0017-9310(02)00418-0
- J.E. Julia, T. Hibiki, M. Ishii, B.-J. Yun, G.-C. Park, Drift-flux model in a subchannel of rod bundle geometry, Int. J. Heat Mass Transf. 52 (2009) 3032-3041. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.012
- O. Marfaing, M. Guingo, J. Lavieville, G. Bois, N. Mechitoua, N. Merigoux, S. Mimouni, An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe, Chem. Eng. Sci. 152 (2016) 579-585. https://doi.org/10.1016/j.ces.2016.06.041
- T. Ikehara, Y. Kudo, M. Tamitani, M. Yamamoto, Effect of subchannel void fraction distribution on lattice physics parameters for boiling water reactor fuel bundles, J. Nucl. Sci. Technol. 45 (12) (2008) 1237-1251. https://doi.org/10.1080/18811248.2008.9711912
- T. Ama, H. Hyoudou, T. Takeda, Effect of radial void distribution within fuel assembly on assembly neutronic characteristics, J. Nucl. Sci. Technol. 39 (1) (2002) 90-100. https://doi.org/10.3327/jnst.39.90
-
A. Bennett, N. Martin, M. Avramova, K. Ivanov, Impact of radial void fraction distribution on boiling water reactor lattice physics calculations: application to AREVA's next generation BWR fuel assembly, the
$ATRIUM^{TM}$ 11 design, in:PHYSOR 2016, Sun Valley, Idaho, May 1-5, 2016. - F. Jatuff, F.D. Giust, J. Krouthen, S. Helmersson, R. Chawla, Effects of void uncertainties on the void reactivity coefficient and pin power distributions for a 10x10 BWR assembly, Ann. Nucl. Energy 33 (2006) 119-125. https://doi.org/10.1016/j.anucene.2005.09.007
- NEA, NUPEC BWR Full-Size Fine-mesh Bundle Test (BFBT) Benchmark: Volume 1-Specifications, vol. 5, NEA/NSC/DOC, 2005. OECD/NEA, 2006.
- NEA, Benchmark for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs: Specification and Support Data for Neutronics Cases (Phase I), vol. I, NEA/NSC/DOC, 2013, 7. OECD/NEA, 2013.
- NEA, Boiling Water Reactor Turbine Trip (TT) Benchmark, Volume I: Final Specifications, vol. 1, NEA/NSC/DOC, 2001. OECD/NEA, 2001.
- M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-phase Flow, second ed., Springer, New York, 2011.
- S. Levy, Two-Phase Flow in Complex Systems, John Wiley & Sons, New York, 1999.
- N.E. Todreas, M.S. Kazimi, Nuclear Systems I: Thermal Hydraulic Fundamentals, second ed., CRC Press, Taylor & Francis Group, USA, 2012.
- R. Luo, Q. Song, X. Yang, Z. Wang, Developed 'laminar' bubbly flow with nonuniform bubble sizes, Sci. China, Ser. E 44 (1) (2001) 47-54. https://doi.org/10.1007/BF02916725
- D.B. Pelowitz, A.J. Fallgren, G.E. McMath, MCNP6 User's Manual, Code Version 6.1.1beta, Manual Rev. 0, LA-CP-14-00745, Rev. 0, 2014.