DOI QR코드

DOI QR Code

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G. (Homi Bhabha National Institute) ;
  • Rajasekaran, S. (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Selvakumar, J. (Homi Bhabha National Institute) ;
  • Kaushik, Chetan P. (Homi Bhabha National Institute) ;
  • Gayen, J.K. (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Ravi, K.V. (Nuclear Recycle Board, Bhabha Atomic Research Centre)
  • Received : 2018.07.27
  • Accepted : 2018.12.05
  • Published : 2019.04.25

Abstract

Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Keywords

References

  1. E. Vernaz, S. Gin, C. Veyer, Waste glass, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Amsterdam, 2012, pp. 451-483.
  2. K. Raj, K.K. Prasad, N.K. Bansal, Radioactive waste management practices in India, Nucl. Eng. Des. 236 (2006) 914-930. https://doi.org/10.1016/j.nucengdes.2005.09.036
  3. B.K. Maji, H. Jena, R. Asuvathraman, Electrical conductivity and glass transition temperature (Tg) measurements on some selected glasses used for nuclear waste immobilization, J. Non-Cryst. Solids 434 (2016) 102-107. https://doi.org/10.1016/j.jnoncrysol.2015.12.008
  4. T. Okura, N. Yoshida, Immobilization of simulated high level nuclear wastes with$ Li_2O-CeO_2-Fe_2O_3-P_2O_5$ glasses, Int. J. of Chem. and Molecular Eng. 6 (2012). No.8.
  5. R.F. Taylor, Chemical Engineering problems of radioactive waste fixation by Vitrification, Chem. Eng. Sci. 40 (No. 4) (1985) 541-569. https://doi.org/10.1016/0009-2509(85)80001-4
  6. K. Kawai, T. Fukuda, Y. Nakano, K. Takeshita, Thermal decomposition analysis of simulated high-level liquid waste in cold cap, Nucl. Sci. Technol. 2 (2016) 44, 1-7.
  7. H.N. Guerrero, D.F. Bickford, H.N. Neshat, Numerical models of waste glass Melters Part II - Computational modelling of DWPF, in: Proceedings Westinghouse Savannah River Co, 2003, pp. 1-10. WSRC-MS-2003-00272 Part II.
  8. R. Pokorny, D.A. Pierce, P. Hrma, Melting of glass batch: model for multiple overlapping gas-evolving reactions, Thermochim. Acta 541 (2012) 8-14. https://doi.org/10.1016/j.tca.2012.04.019
  9. C. Rodriguez, J. Chun, D. Pierce, M. Schweiger, P. Hrma, Kinetics of cold cap reactions for vitrification of nuclear waste glass based on simultaneous differential scanning calorimetry -thermogravimetry (DSC - TGA) and evolved gas analysis (EGA), in: Proceedings of W M Conference, 2014.
  10. R. Pokorny, J.H. Zachary, D.R. Dixon, M.J. Schweiger, D.P. Guillen, A.A. Kruger, P. Hrma, One-dimensional cold cap model for melters with bubblers, J. Am. Ceram. Soc. 98 (2015) 3112-3118. https://doi.org/10.1111/jace.13775
  11. S. Lee, P. Hrma, R. Pokorny, J. Klozek, V. Vander, D.R. Dixon, S.A. Luksic, Rodriguez, C.P. Chun, J. Schweiger, M.J. Kruger, A. Albert, Effect of Melter feed foaming on the heat flux to the cold cap, J. Nucl. Mater. 496 (2017) 54-65. https://doi.org/10.1016/j.jnucmat.2017.09.016
  12. G. Suneel, P.M. Satya Sai, C.P. Kaushik, J.K. Gayen, K.V. Ravi, Amitava Roy, Experimental investigations and numerical modelling of Joule Heated Ceramic Melter for vitrification of radioactive waste, Journal of Hazardous, Toxic and radioactive waste 23 (2019) 1-14.
  13. H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 204-237. https://doi.org/10.1021/ac60131a045
  14. E.S. Freeman, B. Carroll, The application of thermoanalytical techniques to the reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem. 62 (1958) 394-397. https://doi.org/10.1021/j150562a003
  15. S. Vyazovkin, Modification of the integral isoconversional method to account for variation in activation energy, J. Comput. Chem. 22 (2001) 178-183. https://doi.org/10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
  16. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez- Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis of data, Thermochim. Acta 520 (2011) 1-19. https://doi.org/10.1016/j.tca.2011.03.034
  17. T. Liavitskaya, S. Vyazovkin, Delving into kinetics of reversible thermal decomposition of solids measured on heating and cooling, J. Phys. Chem. C 121 (2017) 15392-15401. https://doi.org/10.1021/acs.jpcc.7b05066
  18. P.K. Mishra, D. Vaishali, D.E. Ghongane, T.P. Valsala, M.S. Sonavane, Preparation and Characterisation of Glass product with modified composition for Vitrification of high level radioactive waste, J. Therm. Anal. Calorim. 112 (2013) 103-108. https://doi.org/10.1007/s10973-012-2811-7
  19. D. Banerjee, V.K. Sudrasan, A.J. Joseph, R.K. Mishra, I. Singh, P.K. Wattal, D. Das, Role of TiO2 on physicochemical properties of cesium borosilicate glasses, J. Am. Ceram. Soc. 93 (2010) 3252-3258. https://doi.org/10.1111/j.1551-2916.2010.03909.x
  20. M.I. Ojovan, W.E. Lee, C. Veyer, in: An Introduction to Nuclear Waste Immobilisation, second ed., Elsevier, Waltham, 2014.

Cited by

  1. Modeling batch melting: Roles of heat transfer and reaction kinetics vol.103, pp.2, 2019, https://doi.org/10.1111/jace.16898
  2. Vitrification as a method of soil remediation vol.62, pp.3, 2019, https://doi.org/10.5937/zasmat2103166t
  3. A review on modern and smart technologies for efficient waste disposal and management vol.297, 2019, https://doi.org/10.1016/j.jenvman.2021.113347