DOI QR코드

DOI QR Code

Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater

  • Kim, Kwang-Wook (Korea Atomic Energy Research Institute) ;
  • Shon, Woo-Jung (Korea Atomic Energy Research Institute) ;
  • Oh, Maeng-Kyo (Korea Atomic Energy Research Institute) ;
  • Yang, Dasom (Korea Atomic Energy Research Institute) ;
  • Foster, Richard I. (Korea Atomic Energy Research Institute) ;
  • Lee, Keun-Young (Korea Atomic Energy Research Institute)
  • 투고 : 2018.07.25
  • 심사 : 2018.11.28
  • 발행 : 2019.04.25

초록

Coprecipitation using hydrous ferric oxide (HFO) has been effectively used for the removal of radionuclides from radioactive wastewater. This work studied the dynamic behavior of HFO floc formation during the neutralization of acidic ferric iron in the presence of several radionuclides by using a photometric dispersion analyzer (PDA). Then the coagulation-flocculation system using HFO-anionic poly acrylamide (PAM) composite floc system was evaluated and compared in seawater and distilled water to find the effective condition to remove the target nuclides (Co-60, Mn-54, Sb-125, and Ru-106) present in wastewater generated in the severe accident of nuclear power plant like Fukushima Daiichi case. A ferric iron dosage of 10 ppm for the formation of HFO was suitable in terms of fast formation of HFO flocs without induction time, and maximum total removal yield of radioactivity from the wastewater. The settling time of HFO flocs was reduced by changing them to HFO-PAM composite floc. The optimal dosage of anionic PAM for HFO-anionic PAM floc system was approximately 1-10 ppm. The total removal yield of Mn-54, Co-60, Sb-125, Ru-106 radionuclides by the HFO-anionic PAM coagulation-flocculation system was higher in distilled water than in seawater and was more than 99%.

키워드

참고문헌

  1. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, second ed., IWA publishing, London, 2008.
  2. F. Pang, P. Teng, T. Teng, A.K. Mohd Omar, Heavy metal removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions, Water Qual. Res. J. Can. 44 (2) (2009) 174-182. https://doi.org/10.2166/wqrj.2009.019
  3. M. Potts, D. Churchwell, Removal of radionuclides in wastewater utilizing potassium ferrate (VI), Water Environ. Res. 66 (2) (1994) 107-109. https://doi.org/10.2175/WER.66.2.3
  4. D. Hobbs, Precipitation of uranium and plutonium from alkaline salt solutions, Nucl. Tech. 128 (1999) 103-112. https://doi.org/10.13182/NT128-103
  5. A. Baeza, M. Fernandez, M. Herranz, F. Legarda, C. Miro, A. Salas, Elimination of man-made radionuclides from natural wasters by applying a standard coagulation-flocculation process, J. Radioanal. Nucl. Chem. 260 (2) (2004) 321-326. https://doi.org/10.1023/B:JRNC.0000027104.99292.6b
  6. H. Matsuzuru, K. Koyama, Y. Wadachi, Treatment of plutonium liquid wastes by flocculation, J. Nucl. Sci. Technol. 14 (6) (1972) 18-22.
  7. G. Yong, Z. Jun, Z. Guanghui, Z. Dong, C. Weiwen, Y. Guoqi, L. Xuejun, M. Bangzhong, Z. Junhui, G. Ping, Treatment of the wastewater containing low-level Am using flocculation-microfiltration process, Separ. Purif. Technol. 40 (2004) 183-189. https://doi.org/10.1016/j.seppur.2004.02.009
  8. N. Bader, A.A. Benkhayal, B. Zimmermann, Co-prcipitation as a sample preparation technique for trace elements analysis : an overview, Int. J. Chem. Sci. 12 (2) (2014) 519-525.
  9. R.J. Crawford, I.H. Harding, D.E. Mainwaring, Adsorption and coprecipitation of single Heavy metal ions onto the hydrated oxide of iron and chromium, Langmuir 9 (1993) 3050-3056. https://doi.org/10.1021/la00035a051
  10. M. Streat, K. Hellgardt, N.L.R. Newton, Hydrous ferric oxide as an adsorbent in water treatment part 1. Preparation and physical characterization, Process Saf. Environ. Protect. 86 (2008) 1-9. https://doi.org/10.1016/j.psep.2007.10.007
  11. The American Nuclear Society Special Committee on Fukushima. Fukushima Daiichi, American Nuclear Society Committee Report, March 2012. Available from: http://fukushima.ans.org/report/Fukushima_report.pdf.
  12. Tokyo Electric Power Company, A one-year review of Fukushima Daiichi nuclear power station "Steps to achieve stabilization", Available from: http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_120311_03-e.pdf, March 2012.
  13. Tokyo Electric Power Company, Nuclide analysis results of water at water treatment facility, Available from: http://www.tepco.co.jp/en/nu/fukushimanp/images/handouts_120326_08-e.pdf, March 2012.
  14. Tokyo Electric Power Company, Nuclide analysis results of water at water treatment facility, Available from: http://www.tepco.co.jp/en/nu/fukushima-p/f1/smp/2013/images/water_130111-e.pdf, March 2013.
  15. P. Sylvester, T. Milner, J. Jensen, Radioactive liquid waste treatment at Fukushima Daiichi, J. Chem. Technol. Biotechnol. 88 (2013) 592-1596.
  16. K.-W. Kim, Y.-J. Baek, K.-Y. Lee, D.-Y. Chung, J.-K. Moon, Treatment of radioactive waste seawater by coagulation-flocculation method using ferric hydroxide and poly acrylamide, J. Nucl. Sci. Technol. 53 (3) (2016) 439-450. https://doi.org/10.1080/00223131.2015.1055313
  17. Z. Su, X. Li, Y. Yang, P. Du, X. Fang, Insights into the role of mixing conditions in coagulationeflocculation process: evaluation from performance, flocs formation and density perspectives, Desalination Water Treat. 95 (2017) 80-87. https://doi.org/10.5004/dwt.2017.21495
  18. C. Kan, C. Huang, J.R. Pan, Time requirement for rapid in coagulation, Colloid. Surface. 203 (2002) 1-9. https://doi.org/10.1016/S0927-7757(01)01095-0
  19. J. Gregory, Monitoring floc formation and breakage, Water Sci. Technol. 50 (12) (2004) 163-170. https://doi.org/10.2166/wst.2004.0709
  20. J. Eisenlauer, D. Horn, Fiber-optic sensor technique for flocculant dose control in flowing suspensions, Colloid. Surface. 14 (1985) 121-134. https://doi.org/10.1016/0166-6622(85)80046-9
  21. M.A. Yukselen, J. Gregory, The effect of rapid mixing on the break-up and reformation of flocs, J. Chem. Technol. Biotechnol. 79 (2004) 782-788. https://doi.org/10.1002/jctb.1056
  22. T. Liu, Z. Chen, W. Yu, J. Shen, J. Gregory, Effect of two-stage coagulant addition on coagulation-utrafiltration process for treatment of humic-rich water, Water Res. 45 (2011) 4260-4268. https://doi.org/10.1016/j.watres.2011.05.037
  23. P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc strength and breakage, Water Res. 39 (2005) 3121-3137. https://doi.org/10.1016/j.watres.2005.05.022
  24. J. Gregory, D.W. Nelson, Monitoring of aggregate in flowing suspensions, Colloid. Surface. 18 (1986) 175-188. https://doi.org/10.1016/0166-6622(86)80312-2
  25. K.-W. Kim, K.-Y. Lee, E.-H. Lee, Y. Baek, D.-Y. Chung, J.-K. Moon, A concept of emergency countermeasure against radioactive wastewater generated in severe nuclear accident like Fukushima Daiichi case, Nucl. Tech. 193 (2016) 318-329. https://doi.org/10.13182/NT15-23
  26. L. Charlet, A.A. Manceau, X-ray adsorption spectroscopic study on the sorption of Cr(III) at the oxide-water interface, J. Colloid Interface Sci. 148 (2) (1992) 443-458. https://doi.org/10.1016/0021-9797(92)90182-L
  27. K.G. Karthikeyan, H.A. Elliott, F.S. Cannon, Adsorption, Coprecipitation of copper with hydrous oxide of iron and aluminum, Environ. Sci. Technol. 31 (1997) 2721-2725. https://doi.org/10.1021/es9609009
  28. B. Lo, T.D. Waite, Structure of hydrous ferric oxide aggregates, J. Colloid Interface Sci. 222 (2000) 83-90. https://doi.org/10.1006/jcis.1999.6599
  29. R.M. Cornell, R. Giovanoli, W. Schneider, Review of the hydrolysis of iron (III) and the crystallization of amorphous iron(III) hydroxide hydrate, J. Appl. Chem. Biotechnol. 46 (1989) 115-134.
  30. C. Tokoro, T. Sakakibara, S. Suzuki, Mechanism investigation and surface complexation modeling of zinc sorption on aluminum hydroxide I adsorption/coprecipitation, Chem. Eng. J. 279 (2015) 86-92. https://doi.org/10.1016/j.cej.2015.05.003
  31. D.A. Dzombak, F.M. Morel, Surface Complexation Modelling: Hydrous Ferric Oxide, Hohn Willey & Sons, New York, 1990.
  32. J.S. Weatheril, K. Morris, P. Bots, T.M. Stawski, A. Janssen, L. Abrahamsen, R. Blackham, S. Shaw, Ferrihydrite formation : the roles of Fe13 Keggin cluster, Environ. Sci. Technol. 50 (2016) 9333-9342. https://doi.org/10.1021/acs.est.6b02481
  33. K.L. Hildred, P.S. Townson, G.V. Hutson, R.A. Williams, Characterisation of particulates in the BNFL enhanced actinide removal plant, Powder Technol. 108 (2000) 164-172. https://doi.org/10.1016/S0032-5910(99)00216-8
  34. R. Liu, X. Li, S. Xia, Y. Yang, R. Wu, G. Li, Calcium-enhanced ferric hydroxide coprecipitation of arsenic in the presence of silicate, Water Environ. Res. 79 (11) (2007) 2260-2264. https://doi.org/10.2175/106143007X199324
  35. M.A. Moghadam, M. Soheili, M.M. Esfahani, Effect of ionic strength on settling of activated sludge, Iran. J. Environ. Health Sci. Eng. 2 (1) (2005) 1-5.

피인용 문헌

  1. Design of a mobile dissolved air flotation system with high rate for the treatment of liquid radioactive waste vol.144, 2019, https://doi.org/10.1016/j.psep.2020.07.016