DOI QR코드

DOI QR Code

Biological activity of peptides purified from fish skin hydrolysates

  • Received : 2019.02.28
  • Accepted : 2019.05.08
  • Published : 2019.05.31

Abstract

Fish skin waste accounts for part of the solid waste generated from seafood processing. Utilization of fish skin by bioconversion into high-grade products would potentially reduce pollution and economic cost associated with treating fish processing waste. Fish skin is an abundant supply of gelatin and collagen which can be hydrolyzed to produce bioactive peptides of 2-20 amino acid sequences. Bioactivity of peptides purified from fish skin includes a range of activities such as antihypertensive, anti-oxidative, antimicrobial, neuroprotection, antihyperglycemic, and anti-aging. Fish skin acts as a physical barrier and chemical barrier through antimicrobial peptide innate immune action and other functional peptides. Small peptides have been demonstrated to possess biological activities which are based on their amino acid composition and sequence. Fish skin-derived peptides contain a high content of hydrophobic amino acids which contribute to the antioxidant and angiotensin-converting enzyme inhibitory activity. The peptide-specific composition and sequence discussed in this review can be potentially utilized in the development of pharmaceutical and nutraceutical products.

Keywords

References

  1. Abdelhedi O, Nasri R, Mora L, Toldra F, Nasri M, Jridi M. Collagenous proteins from black-barred halfbeak skin as a source of gelatin and bioactive peptides. Food Hydrocoll. 2017;70:123-33. https://doi.org/10.1016/j.foodhyd.2017.03.030
  2. Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem. 2002;16:963-78. https://doi.org/10.2174/0929867024606731
  3. Bergsson G, Agerberth B, Jornvall H, Gudmundsson GH. Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J. 2005;19:4960-9.
  4. Bernardini RD, Harnedy P, Bolton D, Kerry J, O'Neill E, Mullen AM, et al. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011;4:1296-307.
  5. Bueno-Solano C, Lopez-Cervantes J, Campas-Baypoli ON, Lauterio-Garcia R, Adan-Bante NP, Sanchez-achado DI. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 2009;3:671-5.
  6. Byun HG, Kim SK. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J Biochem Mol Biol. 2002;35:239-43.
  7. Cai L, Wu X, Zhang Y, Li X, Ma S, Li J. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. J Funct Foods. 2015;16:234-42. https://doi.org/10.1016/j.jff.2015.04.042
  8. Camargo ACM, Ianzer D, Guerreiro JR, Serrano SMT. Bradykinin-potentiating peptides: beyond captopril. Toxicon. 2012;4:516-23.
  9. Campoverde C, Milne DJ, Estevez A, Duncan N, Secombes CJ, Andree KB. Ontogeny and modulation after PAMPs stimulation of ${\beta}$-defensin, hepcidin, and piscidin antimicrobial peptides in meagre (Argyrosomus regius). Fish Shellfish Immunol. 2017;69:200-10. https://doi.org/10.1016/j.fsi.2017.08.026
  10. Carrasco-Castilla J, Hernandez-Alvarez AJ, Jimenez-Martinez C, Jacinto-Hernandez C, Alaiz M, Giron-Calle J, et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 2012;135:1789-95. https://doi.org/10.1016/j.foodchem.2012.06.016
  11. Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 2012;135:3020-38. https://doi.org/10.1016/j.foodchem.2012.06.100
  12. Chaud MV, Izumi C, Nahaal Z, Shuhama T, Pires Bianchi MDL, De Freitas O. Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency. J Agric Food Chem. 2002;50:871-7. https://doi.org/10.1021/jf0111312
  13. Chen Q, Reimer RA. Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition. 2009;25:340-9. https://doi.org/10.1016/j.nut.2008.08.012
  14. Chen T, Hou H, Fan Y, Wang S, Chen Q, Si L, et al. Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J Photochem Photobiol B Biol. 2016;165:34-41. https://doi.org/10.1016/j.jphotobiol.2016.10.015
  15. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem. 1980;255:401-5. https://doi.org/10.1016/S0021-9258(19)86187-2
  16. Cheung IWY, Li-Chan ECY. Enzymatic production of protein hydrolysates from steelhead (Oncorhynchus mykiss) skin gelatin as inhibitors of dipeptidylpeptidase IV and angiotensin-I converting enzyme. J Funct Foods. 2017;28:254-64. https://doi.org/10.1016/j.jff.2016.10.030
  17. Chi CF, Wang B, Hu FY, Wang YM, Zhang B, Deng SG, et al. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Res Int. 2015;73:124-9. https://doi.org/10.1016/j.foodres.2014.08.038
  18. Choi D-Y, Choi H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch Pharm Res. 2015;38:139-70. https://doi.org/10.1007/s12272-014-0503-5
  19. Choonpicharn S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol. 2015;52:3134-313. https://doi.org/10.1007/s13197-014-1581-6
  20. Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem. 1997;272:12008-13. https://doi.org/10.1074/jbc.272.18.12008
  21. Conlon JM. Purification of naturally occurring peptides by reversed-phase HPLC. Nat Protoc England. 2007;2(1):191-7. https://doi.org/10.1038/nprot.2006.437
  22. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20:1637-48. https://doi.org/10.1016/0006-2952(71)90292-9
  23. Daiber A, Munzel T. Organic nitrate therapy, nitrate tolerance, and nitrateinduced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid Redox Signal. 2015;23:899-942. https://doi.org/10.1089/ars.2015.6376
  24. Dessy C, Feron O. Pathophysiological roles of nitric oxide: in the heart and the coronary vasculature. Curr Med Chem Anti-inflamm Anti-Allergy Agents. 2004;3:207-16. https://doi.org/10.2174/1568014043355348
  25. Dezsi L. Fibrinolytic actions of ACE inhibitors: a significant plus beyond antihypertensive therapeutic effects. Cardiovasc Res. 2000;47:642-4. https://doi.org/10.1016/S0008-6363(00)00163-2
  26. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008;48:430-41. https://doi.org/10.1080/10408390701425615
  27. Fahmi A, Morimura S, Guo HC, Shigematsu T, Kida K, Uemura Y. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem. 2004;39:1195-200. https://doi.org/10.1016/S0032-9592(03)00223-1
  28. Fang B, Sun J, Dong P, Xue C, Mao X. Conversion of turbot skin wastes into valuable functional substances with an eco-friendly fermentation technology. J Clean Prod. 2017;156:367-77. https://doi.org/10.1016/j.jclepro.2017.04.055
  29. Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker P. Oxidation of high density lipoproteins - I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. J Biol Chem. 1998;273:6080-7. https://doi.org/10.1074/jbc.273.11.6080
  30. Giri A, Osako K, Okamoto A, Okazaki E, Ohshima T. Antioxidative properties of aqueous and aroma extracts of squid miso prepared with Aspergillus oryzae-inoculated koji. Food Res Int. 2011;44:317-25. https://doi.org/10.1016/j.foodres.2010.10.013
  31. Guang C, Phillips RD. Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem. 2009;57:b5113-20. https://doi.org/10.1021/jf900494d
  32. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid ${\beta}$-peptide. Nat Rev Mol Cell Biol. 2007;8:101-12. https://doi.org/10.1038/nrm2101
  33. Halim NRA, Yusof HM, Sarbon NM. Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci Technol. 2016;51:24-33. https://doi.org/10.1016/j.tifs.2016.02.007
  34. Hara H, Funabiki R, Iwata M, Yamazaki K. Portal absorption of small peptides in rats under unrestrained conditions. J Nutr. 1984;114:1122-9. https://doi.org/10.1093/jn/114.6.1122
  35. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18:163-9. https://doi.org/10.1016/j.copbio.2007.01.013
  36. Huang CY, Wu CH, Yang JI, Li YH, Kuo JM. Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. J Food Drug Anal. 2015;23:671-8. https://doi.org/10.1016/j.jfda.2014.06.009
  37. Huang SL, Jao CL, Ho KP, Hsu KC. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides. 2012;35:114-21. https://doi.org/10.1016/j.peptides.2012.03.006
  38. Iwaniak A, Minkiewicz P, Darewicz M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr Rev Food Sci Food Saf. 2014;13:114-34. https://doi.org/10.1111/1541-4337.12051
  39. Jongjareonrak A, Benjakul S, Visessanguan W, Nagai T, Tanaka M. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chem. 2005;93:475-84. https://doi.org/10.1016/j.foodchem.2004.10.026
  40. Jridi M, Nasri R, Lassoued I, Souissi N, Mbarek A, Barkia A, et al. Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin. Food Res Int. 2013;54:1680-7. https://doi.org/10.1016/j.foodres.2013.09.026
  41. Katzenback B. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology (Basel). 2015;4:607-39. https://doi.org/10.3390/biology4040607
  42. Kaur C, Kapoor HC. Antioxidants in fruits and vegetables-the millennium's health. Int J Food Sci Technol. 2001;36:703-25. https://doi.org/10.1046/j.1365-2621.2001.00513.x
  43. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217-23. https://doi.org/10.1016/S0140-6736(05)17741-1
  44. Kembhavi AA, Kulkarni A, Pant A. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl Biochem Biotechnol. 1993;38:83-92. https://doi.org/10.1007/BF02916414
  45. Kim DU, Chung HC, Choi J, Sakai Y, Lee BY. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: a randomized, double-blind, placebo-controlled study. Nutrients. 2018;10:826. https://doi.org/10.3390/nu10070826
  46. Kim SK, Mendis E. Bioactive compounds from marine processing byproducts - a review. Food Res Int. 2006;39:383-93. https://doi.org/10.1016/j.foodres.2005.10.010
  47. Kim SK, Ravichandran YD, Khan SB, Kim YT. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioprocess Eng. 2008;13:511-23. https://doi.org/10.1007/s12257-008-0113-5
  48. Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods. 2010;2:1-9. https://doi.org/10.1016/j.jff.2010.01.003
  49. Kleekayai T, Harnedy PA, O'Keeffe MB, Poyarkov AA, Cunhaneves A, Suntornsuk W, et al. Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chem. 2015;176:441-7. https://doi.org/10.1016/j.foodchem.2014.12.026
  50. Korhonen H, Pihlanto A. Food-derived bioactive peptides--opportunities for designing future foods. Curr Pharm Des. 2003;9:1297-308. https://doi.org/10.2174/1381612033454892
  51. Lacroix IME, Li-Chan ECY. Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J Funct Foods. 2012;4:403-22. https://doi.org/10.1016/j.jff.2012.01.008
  52. Lacroix IME, Li-Chan ECY. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides. 2014;54:39-48. https://doi.org/10.1016/j.peptides.2014.01.002
  53. Lassoued I, Jridi M, Nasri R, Dammak A, Hajji M, Nasri M, et al. Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsinaided process in comparison with commercial halal bovine gelatin. Food Hydrocoll. 2014;41:309-18. https://doi.org/10.1016/j.foodhyd.2014.04.029
  54. Lassoued I, Mora L, Nasri R, Jridi M, Toldra F, Aristoy MC, et al. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J Funct Foods. 2015;13:225-38. https://doi.org/10.1016/j.jff.2014.12.042
  55. Lau CC, Abdullah N, Shuib AS, Aminudin N. Novel angiotensin I-converting enzyme inhibitory peptides derived from edible mushroom Agaricus bisporus (J.E. Lange) Imbach identified by LC-MS/MS. Food Chem. 2014;148:396-401. https://doi.org/10.1016/j.foodchem.2013.10.053
  56. Lee EJ, Hur J, Ham SA, Jo Y, Lee SY, Choi MJ, et al. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int J Biol Macromol. 2017;104:281-6. https://doi.org/10.1016/j.ijbiomac.2017.05.151
  57. Lee JK, Jeon JK, Byun HG. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chem. 2011;125:495-9. https://doi.org/10.1016/j.foodchem.2010.09.039
  58. Lee JK, Jeon JK, Byun HG. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. J Funct Foods. 2014;7:381-9. https://doi.org/10.1016/j.jff.2014.01.021
  59. Lee JK, Li-Chan ECY, Byun H-G. Characterization of ${\beta}$-secretase inhibitory peptide purified from skate skin protein hydrolysate. Eur Food Res Technol. 2015;240:129-36. https://doi.org/10.1007/s00217-014-2314-9
  60. Lee SH, Song KB. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem. 2009;44:378-81. https://doi.org/10.1016/j.procbio.2008.12.001
  61. Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 2010;118:96-102. https://doi.org/10.1016/j.foodchem.2009.04.086
  62. Lu J, Hou H, Fan Y, Yang T, Li B. Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway. J Funct Foods. 2017;33:251-60. https://doi.org/10.1016/j.jff.2017.03.049
  63. Ma Q, Liu Q, Yuan L, Zhuang Y. Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients. 2018;10:420. https://doi.org/10.3390/nu10040420
  64. Mahboob S. Isolation and characterization of collagen from fish waste material-skin, scales and fins of Catla catla and Cirrhinus mrigala. J Food Sci Technol. 2014;52:4296-305. https://doi.org/10.1007/s13197-014-1520-6
  65. Majumdar RK, Roy D, Bejjanki S, Bhaskar N. Chemical and microbial properties of shidal, a traditional fermented fish of Northeast India. J Food Sci Technol. 2016;53:401-10. https://doi.org/10.1007/s13197-015-1944-7
  66. Mendis E, Rajapakse N, Byun HG, Kim SK. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005a;77:2166-78. https://doi.org/10.1016/j.lfs.2005.03.016
  67. Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem. 2005b;53:581-7. https://doi.org/10.1021/jf048877v
  68. Nagarajan M, Benjakul S, Prodpran T, Songtipya P, Kishimura H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012;29:389-97. https://doi.org/10.1016/j.foodhyd.2012.04.001
  69. Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. J Biol Chem. 2017;292:4727-42. https://doi.org/10.1074/jbc.M116.759084
  70. Ngo DH, Kang KH, Jung WK, Byun HG, Kim SK. Protective effects of peptides from skate (Okamejei kenojei) skin gelatin against endothelial dysfunction. J Funct Foods. 2014a;10:243-51. https://doi.org/10.1016/j.jff.2014.06.021
  71. Ngo DH, Kang KH, Ryu B, Vo TS, Jung WK, Byun HG, et al. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chem. 2014b;174:37-43. https://doi.org/10.1016/j.foodchem.2014.11.013
  72. Ngo DH, Qian ZJ, Ryu B, Park JW, Kim SK. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J Funct Foods. 2010;2:107-17. https://doi.org/10.1016/j.jff.2010.02.001
  73. Ngo DH, Ryu B, Vo TS, Himaya SWA, Wijesekara I, Kim SK. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int J Biol Macromol. 2011;49:1110-6. https://doi.org/10.1016/j.ijbiomac.2011.09.009
  74. Ngo DH, Vo TS, Ryu BM, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitory peptides from Pacific cod skin gelatin using ultrafiltration membranes. Process Biochem. 2016;51:1622-8. https://doi.org/10.1016/j.procbio.2016.07.006
  75. Nikoo M, Benjakul S, Xu X. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chem. 2015;181:295-303. https://doi.org/10.1016/j.foodchem.2015.02.095
  76. Nussbaum JM, Seward ME, Bloom GS. Alzheimer disease: a tale of two prions. Prion. 2013;7:14-9. https://doi.org/10.4161/pri.22118
  77. Paul M. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747-803. https://doi.org/10.1152/physrev.00036.2005
  78. Pei X, Yang R, Zhang Z, Gao L, Wang J, Xu Y, et al. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 2010;118:333-40. https://doi.org/10.1016/j.foodchem.2009.04.120
  79. Pihlanto-Leppala A. Bioactive peptides derived from bovine whey proteins. Trends Food Sci Technol. 2000;11:347-56. https://doi.org/10.1016/S0924-2244(01)00003-6
  80. Pomponi SA. The bioprocess-technological potential of the sea. Prog Ind Microbiol. 1999;35:5-13. https://doi.org/10.1016/S0079-6352(99)80092-7
  81. Power O, Nongonierma AB, Jakeman P, Fitzgerald RJ. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc. 2014;73:34-46. https://doi.org/10.1017/S0029665113003601
  82. Pulawski W, Ghoshdastider U, Andrisano V, Filipek S. Ubiquitous amyloids. Appl Biochem Biotechnol. 2012;166:1626-43. https://doi.org/10.1007/s12010-012-9549-3
  83. Pyun HB, Kim M, Park J, Sakai Y, Numata N, Shin JY, et al. Effects of collagen tripeptide supplement on photoaging and epidermal skin barrier in UVBexposed hairless mice. Prev Nutr Food Sci. 2012;17:245-53. https://doi.org/10.3746/pnf.2012.17.4.245
  84. Reimer RA. Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J Endocrinol Soc Endocrinol. 2006;19:1159-70.
  85. Rho SJ, Lee JS, Chung YI, Kim YW, Lee HG. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem. 2009;44:490-3. https://doi.org/10.1016/j.procbio.2008.12.017
  86. Rogerson FM, Chai SY, Schlawe I, Murray WK, Marley PD, Mendelsohn FA. Presence of angiotensin converting enzyme in the adventitia of large blood vessels. J Hypertens. 1992;10:615-20.
  87. Rui X, Boye JI, Simpson BK, Prasher SO. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. J Funct Foods. 2013;5:1116-24. https://doi.org/10.1016/j.jff.2013.03.008
  88. Sae-Leaw T, Karnjanapratum S, O'Callaghan YC, O'Keeffe MB, FitzGerald RJ, O'Brien NM, et al. Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. J Food Biochem. 2017;41:e12350. https://doi.org/10.1111/jfbc.12350
  89. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem. 2003;51:3661-7. https://doi.org/10.1021/jf021156g
  90. Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids. 2012;5:1641-9. https://doi.org/10.1007/s00726-011-0858-6
  91. Seo JK, Lee MJ, Go HJ, Kim YJ, Park NG. Antimicrobial function of the GAPDHrelated antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014;36:571-81. https://doi.org/10.1016/j.fsi.2014.01.003
  92. Seo JK, Lee MJ, Go HJ, Park TH, Park NG. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol. 2012;33:743-52. https://doi.org/10.1016/j.fsi.2012.06.023
  93. Silva RSG, Bandeira SF, Pinto LAA. Characteristics and chemical composition of skins gelatin from cobia (Rachycentron canadum). LWT Food Sci Technol. 2014;57:580-5. https://doi.org/10.1016/j.lwt.2014.02.026
  94. Silveira ST, Martinez-Maqueda D, Recio I, Hernandez-Ledesma B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in ${\beta}$-lactoglobulin. Food Chem. 2013;141:1072-7. https://doi.org/10.1016/j.foodchem.2013.03.056
  95. Singh P, Benjakul S, Maqsood S, Kishimura H. Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chem. 2011;124:97-105. https://doi.org/10.1016/j.foodchem.2010.05.111
  96. Su Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol B Biochem Mol Biol. 2011;158:149-54. https://doi.org/10.1016/j.cbpb.2010.11.002
  97. Sun L, Zhang Y, Zhuang Y. Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. J Funct Foods. 2013;5:154-62. https://doi.org/10.1016/j.jff.2012.09.006
  98. Theodore AE, Raghavan S, Kristinsson HG. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J Agric Food Chem. 2008;56:7459-66. https://doi.org/10.1021/jf800185f
  99. Thuanthong M, De Gobba C, Sirinupong N, Youravong W, Otte J. Purification and characterization of angiotensin-converting enzyme-inhibitory peptides from Nile tilapia (Oreochromis niloticus) skin gelatine produced by an enzymatic membrane reactor. J Funct Foods. 2017;36:243-54. https://doi.org/10.1016/j.jff.2017.07.011
  100. Wang L, An X, Yang F, Xin Z, Zhao L, Hu Q. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chem. 2008;108:616-23. https://doi.org/10.1016/j.foodchem.2007.11.017
  101. Wang TY, Hsieh CH, Hung CC, Jao CL, Chen MC, Hsu KC. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide- 1 stimulators improve glycaemic control in diabetic rats: a comparison between warm- and cold-water fish. J Funct. 2015;19:330-40. https://doi.org/10.1016/j.jff.2015.09.037
  102. Wu H, Liu Z, Zhao Y, Zeng M. Enzymatic preparation and characterization of ironchelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res Int. 2012;48:435-41. https://doi.org/10.1016/j.foodres.2012.04.013
  103. Wu Q, Jia J, Yan H, Du J, Gui Z. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: biochemical characterization and molecular docking study. Peptides. 2015;68:17-24. https://doi.org/10.1016/j.peptides.2014.07.026
  104. Wu W, Li B, Hou H, Zhang H, Zhao X. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. J Funct Foods. 2017;35:418-27. https://doi.org/10.1016/j.jff.2017.06.013
  105. Xu L, Dong W, Zhao J, Xu Y. Effect of marine collagen peptides on physiological and neurobehavioral development of male rats with perinatal asphyxia. Mar Drugs. 2015;13:3653-71. https://doi.org/10.3390/md13063653
  106. Yamamoto N, Akino A, Takano T. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci. 1994;77:917-22. https://doi.org/10.3168/jds.S0022-0302(94)77026-0
  107. Zhang Y, Duan X, Zhuang Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides. 2012;38:13-21. https://doi.org/10.1016/j.peptides.2012.08.014

Cited by

  1. Anti-Alzheimer’s Materials Isolated from Marine Bio-resources: A Review vol.16, pp.10, 2019, https://doi.org/10.2174/1567205016666191024144044
  2. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications vol.18, pp.4, 2019, https://doi.org/10.3390/md18040214
  3. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities vol.18, pp.8, 2019, https://doi.org/10.3390/md18080391
  4. Identification of novel angiotensin I‐converting enzyme inhibitory peptide from collagen hydrolysates and its molecular inhibitory mechanism vol.55, pp.9, 2020, https://doi.org/10.1111/ijfs.14578
  5. Anti-aging skin and antioxidant assays of protein hydrolysates obtained from salted shrimp fermented with Salinivibrio cibaria BAO-01 vol.63, pp.3, 2020, https://doi.org/10.3839/jabc.2020.028
  6. Production of Protein Hydrolysate Containing Antioxidant and Angiotensin -I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus pelamis) Blood vol.8, pp.11, 2019, https://doi.org/10.3390/pr8111518
  7. Fish Waste: From Problem to Valuable Resource vol.19, pp.2, 2021, https://doi.org/10.3390/md19020116
  8. A peptide fraction of Olive Flounder (Paralichthys olivaceus) Skin Hydrolysate Inhibits Amyloid-β Generation in SH-SY5Y Cells via Suppression of BACE1 Expression vol.27, pp.1, 2021, https://doi.org/10.1007/s10989-020-10113-8
  9. Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study vol.26, pp.7, 2021, https://doi.org/10.3390/molecules26072064
  10. Enzymatic hydrolysis: Sialylated mucin (SiaMuc) glycoprotein of edible swiftlet's nest (ESN) and its molecular weight distribution as bioactive ESN SiaMuc-glycopeptide hydrolysate vol.175, 2021, https://doi.org/10.1016/j.ijbiomac.2021.02.007
  11. Unveiling Putative Functions of Mucus Proteins and Their Tryptic Peptides in Seven Gastropod Species Using Comparative Proteomics and Machine Learning-Based Bioinformatics Predictions vol.26, pp.11, 2021, https://doi.org/10.3390/molecules26113475
  12. Role of fish collagen hydrolysate in attenuating inflammation-An in vitro study vol.45, pp.9, 2019, https://doi.org/10.1111/jfbc.13876
  13. Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products vol.116, 2021, https://doi.org/10.1016/j.tifs.2021.08.007
  14. Generation and Characterization of Novel Bioactive Peptides from Fish and Beef Hydrolysates vol.11, pp.21, 2021, https://doi.org/10.3390/app112110452
  15. Bioactivity of the Protein Hydrolysates Obtained from the Most Abundant Crustacean Bycatch vol.23, pp.6, 2021, https://doi.org/10.1007/s10126-021-10072-1
  16. Characterization of Antioxidant Peptides from Thai Traditional Semi-Dried Fermented Catfish vol.7, pp.4, 2019, https://doi.org/10.3390/fermentation7040262
  17. ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury vol.19, pp.12, 2019, https://doi.org/10.3390/md19120655