
Journal of Korea Multimedia Society Vol. 22, No. 6, June 2019(pp. 706-715)
https://doi.org/10.9717/kmms.2019.22.6.706

1. INTRODUCTION

Software development is prone to failure. Bad

planning is one of the factors that led to failure.

Inappropriate plans lead to communication fraud

among software developers, programmers, and

stakeholder[1]. Software development is commonly

used with object-oriented paradigm. The ob-

ject-oriented paradigm is modeling the real world

into the object. Developers need a standard nota-

tion to represent the object and their relations[2].

Applying Natural Language Processing (NLP)

techniques in understanding of the problem state-

ment is recommended. NLP analyzes the words

from the problem statement. NLP has several tasks

such as POS Tagger function, chunking process,

stemming, and named entity recognition. These

tasks have used to analyzed class diagram and re-

lationships among classes.

This study has developed an application to ex-

tract class diagram notation consist of a class

name, attributes, and operations from a problem

statement. The class diagram notation extracted

by using NLP approach[3]. If the class diagram has

been analyzed, the relationships of class diagrams

are identified. The relationships are represented by

the main verb in a sentence[4]. The algorithm of

applications determines relationships among class-

es based on a transitive verb. The grammatical

rules divided the relationships according to the

type associations, aggregation, composition, and

generalization.

This paper describes how to extract relation-

ships based on NLP approach and visualizes the

Development of UML Tool using WPF Framework
and Forced-Directionality Graph Algor ithm

Ahmad Zulfiana Utama†, Duk-Sung Jang††

ABSTRACT

This research implemented grammatical rules for relationship extraction from class diagram candidate.
The problem statement is generated by our algorithm to yield class diagram and candidate relationship
candidates. The relationships of class diagrams are extracted automatically from the problem statement
by using Natural Language Processing (NLP). The extraction used the grammatical rules that obtained
from various sources and translated into our algorithm. The performance evaluation of the extraction
algorithm used ATM problem statements. The application captures the problem statement and draws
automatically the relations of class diagrams using Forced-Directionality Graph algorithm. The
performance evaluations show refining methods for class diagram and relationships extraction improve
recall score.

Key words: Natural Language Processing, Problem Statement, Class Diagram, Relationships, Force-
Directionality Graph Algorithm

※ Corresponding Author : Duk-Sung Jang, Address:
(42601) Sungseo Campus of Keimyung University,
Dalgubul-daero 1095, Dalseo-gu, Daegu, Korea, TEL :
+82-53-580-5267, FAX : +82-53-580-5165, E-mail : dsjang
@kmu.ac.kr
Receipt date : Mar. 5, 2019, Revision date : May 23, 2019
Approval date : June 4, 2019

††(studied at) Dept. of Computer Eng., Keimyung
University, (working at) Indonesian National Institute
of Aeronautic and Space
(E-mail : ahmad.zulfiana@lapan.go.id)

††Dept. of Computer Eng., School of Engineering, Kei-
myung University

707Development of UML Tool using WPF Framework and Forced-Directionality Graph Algorithm

results by Forced-Directionality Graph(FDG) al-

gorithm. The FDG algorithm will be implemented

in this UML application to draw automatically

class diagrams with relationships.

2. RELATED WORKS

Some research has been developed to find gram-

matical rules. The grammatical rules are man-

datory tasks in NLP. A Researcher can define their

grammatical rules related to domain research.

Previous studies about grammatical rules in class

diagram extraction domain have explained by

Elbendak[5] and Sagar[6].

Elbendak[5] represented Class-Gen tool, which

can identify object/classes from natural language

specifications automatically. Class-gen generated

requirements from uses case description that is

written in natural language. They are using a

memory-based shallow parser(MBSP) for the pre-

processing stage, and also developing design rules

based on grammatical language.

Sagar[6] has proposed design rules build upon

grammatical constructs. This rule aims to extract

class diagram notation from problem statements

automatically. Design rules categorized as class

rules, attribute rules, operation rules, relations

rules, and subject forms rules. Each rule has differ-

ent formulations. For instance, class rules have

four formulations to distinguish words as a class

name from the sentence. Also, attribute rules have

five formulations to gather information from sen-

tences. The main contributions of their works that

were created the strict pattern (design rules) to an-

alyze problem statement. The results of the works

reach around 90 percent for recall and precision

measurement on ATM problem statements made

by Rumbaugh[7].

This study implemented the grammatical rules

from Elbendak[5] and Sagar[6]. Furthermore, we

translated and implemented into the UML tools. In

addition, this study developed refinement methods,

such as identification of relationship using depend-

ency parser, and checking similarity of words with

WordNet library. Checking similarity function in

WordNet has been used by Lee and Hwang[8] to

differ semantic similarity that was used to find a

correlation between image tags. Also, this study

proposed a new technique to draw automatically

class diagrams using FDG algorithm.

3. RELATIONSHIPS

3.1 Class Diagram Extraction

To determine a relationship of class diagrams,

first, the program must find the class diagram from

the problem statement. The detailed process for

determining class has been discussed in our pre-

vious research. The algorithm of class diagram ex-

traction used the grammatical rules from previous

studies and refinement methods that were devel-

oped during implementation phases. The evalua-

tion results for the algorithm achieved a high score,

which is close to 95 percent for recall or pre-

cision[3].

3.2 Relationship Extraction

Our research has succeeded in define the candi-

date class automatically so that we would use as

the basic formula for define candidates relationship.

In general, the connection identifies by a verb/verb

phrase. If there are two classes separated by a

verb, the verb is used as a relationship candidate.

To find out the relationship, if one class possess,

controls, is connected to, is related to, is a part

of, has parts, is a member of, or has/have as mem-

bers some other class in our system.

There are several stages to extract relationship.

The algorithm extracted relationship type sequen-

tially from association, aggregation, composition,

and generalization. Class relationship modeling

starts with creating an initial set of aggregation,

composition, and generalization. After that, assign

the associations to the classes from unused verbs.

708 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 6, JUNE 2019

The order based on the verb forming a relationship.

The type of relation aggregation, composition, and

generality has special verbs while associations fit

all types of verbs.

3.2.1 Association Extraction

The association relations are the most general

relationships. It is a glue among classes; if the

class has not an association, it is means the class

is isolated. The association relationship defines the

semantic connections between individual of class

candidates. Classes can interact with each other

and visualize by associations relationship in a

diagram. Association carries information or known

as messages relationship among the classes in the

system. We set tuple of association as:

A:= (Class1, Class2, Message)

In natural language text, association is marked

by verb phrases. We are collected the grammatical

rules to denote an association relationship is shown

in Table 1.

3.2.2 Aggregation Extraction

Aggregation is a special kind of association that

represents “whole/part” hierarchy. The whole side

of the relationships is often called the assembly or

the aggregate. Aggregation can express class is a

combination of the other classes. For example, we

can define “car” as an aggregation of “engine”,

“body”, and so forth[11]. In other hands, the engine

is “part of” the car. This “part of” relationships is

known as aggregation. This relationship is a weak

form of containment in that the lifetimes of the

whole and its parts are independent. For example,

in car problems, we can replace the type of engine

without destroying the car object.

3.2.3 Composition Extraction

The composition is a strong kind of aggregation

type. If the aggregate is destroyed, then the parts

would be destroyed as well. The object parts of

a composition cannot stand alone; the objects exist

only to serve the aggregate. This relationship ex-

ists in the lifetimes of the whole, and its parts are

dependent.

The rules in composition extraction from re-

quirement specification are limited. It is hard to

distinguish between aggregation and composition

relationships, because the formula is very similar,

shown in Table 3.

Table 1. Grammatical Rules to define association type.

No Grammatical Rules References

1
If the sentence has a form: C1 – VB – C2 where C1 and C2 are class candidates, VB
is an association relationship. The VB determine as message in this relation.

[5][9][10]

2
A transitive verb is a candidate for a relationship type. A transitive verb links a subject
and an object.

C1(subj) – transitive verb – C2(obj)
[6][9][4]

3

A verb with a preposition is a candidate for a relationship. A verb that contains a
prepositional object linked to a transitive verb along with a preposition combines with
the preposition to form a relationship.

C1 – verb – preposition - C2

[6]

4

A verb showing possession (e.g., “to have”) may also imply an aggregation or association.
In this type of “has/have” phrase, the noun that occurs after the phrase does not usually
denote an attribute. The possession would show an association relationship between two
entity types (classes).

C1 – has/have - C2

[9]

5
If the verb phrase cannot be categorized into aggregation, composition or generalization,
or processed to trivial relations, is an association relation.

if V not in (aggregation, composition, generalization) then V is association.
[6]

709Development of UML Tool using WPF Framework and Forced-Directionality Graph Algorithm

3.2.4 Generalization Extraction

The generalization uses to arrange classes into

inheritance hierarchies. A high-level abstraction is

generalized, and a low-level abstraction is speci-

alized. The specialized classes receive all of the at-

tributes and operations, which are defined in the

parent class. The classes in a generalization rela-

tionship must be the same type/abstraction.

One of the most significant rules to define gen-

eralization is the “is-a” rule. The “is-a” rule states

that class A can only be a valid subclass of class

B. The rule of the “is-a” verb typically indicates

a hierarchical relationship between two classes.

Organizing classes into inheritance hierarchies

are critical in object-oriented design and program-

ming. In the practical object-oriented program-

ming, the generalizations help to evade duplication

and make the body of the class is reusable.

3.3 Refining Algorithm

3.3.1 Object of Preposition

We can find out the object of prepositions by

used POS tagging and knows the relation in a

phrase by using the dependency tree. POS tagging

marked the object of prepositions with the pobj tag.

Fig. 1 is visualization of the dependency tree ob-

ject of prepositions. The "cart" word is an object

of prepositions by using a preposition "to." The ob-

Table 2. Grammatical Rules to define aggregation type

No Grammatical Rules References

1

Find the aggregation by finding verb phrase in the form “something contains something”,
“something is part of something”, and “something is made up of something”. The verb
phrase patterns such as:

C1 - “is made up of” - C2
C1 - “is part of” - C2
C1 - “contains” - C2
C1 - “comprises” - C2

[6][9]
[12][13]

2
If the sentence has formed:

C1 – has/have – C2 – C3 - ...
[12]

Table 3. Grammatical Rules to define composition type

No Grammatical Rules References

1
The “of” prepositions may indicate the composition.

C1 - “of” - C2
[9]

2
If a verb is in the following list {include, involve, consists of, contain, comprise, divided
to, embrace}, this indicates a relationship of aggregation or composition.

[14][15]

Fig. 1. Example of relationships for object of prepositions case.

710 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 6, JUNE 2019

ject of preposition will have no meaning if it does

not refer to the verb in a sentence. To find out the

verb of an object of prepositions can use the to-

ken.head function on spaCy. The spaCy uses the

terms head and child to define the linking of words

in a phrase. Each word can only have one head;

this head is the parent of a word. The linking of

words describes as "parent-child."

3.3.2 Dependency parser

Dependencies relation is a short description of

grammatical relationships in a sentence to ease un-

derstanding and increase effectiveness. It repre-

sents all sentence relationships uniformly as typed

dependency relations. The dependency analyzes

triples of words to produce syntactic relations.

Dependency parsers can be used to detect com-

pound verb for associate relations and detect rela-

tions based on the relationship between words. The

sentence can consist of two verbs which refer to

a subject known as a compound verb. Fig. 2. An

example of a compound verb. For problems as il-

lustrated in Fig. 2, the design rules can only identi-

fy one relationship, specifically subject in the first

verb and objects.

Design rules will extract the relationship in Fig.

2. based on the first verb. Whereas the second verb

"related to" is not determined. The advantages of

this examination will produce more accurate

results. Results obtained from Fig. 2. The depend-

ency parser method will extract the association re-

lationship that connects the payment class and

account. The following is an example of a snippet

list from the results of the preprocessing process

that stores information on dependency parser:

[[. . . ('account', ['NP', 'NOUNPHRASE',

'pobj', 'account'], ['related to', 'IN'], ['one'])]],

Dependency parser stored in index 2 [‘related to

',‘ IN'] for head, and child in index 3 ['one']. The

searching algorithm to get dependency information

started from the last index, and each iteration

traces the parent from the previous index. For ex-

ample, the word account has a parent "related to,"

the word "related to" has a parent "has," and the

"has" word has a child "payment." The searching

algorithm would stop when the noun subject had

found.

3.3.3 Word Similarity Methods

We have developed two methods to reduce the

similarity of words contained in the problem state-

ment; checking words using the similarity() func-

tion of the WordNet library and check each candi-

date class which consists of a noun phrase. this

function detects words equality based on vector

Fig. 2. Example of the finding relationships by using dependency parser.

Fig. 3. Spring Model.

711Development of UML Tool using WPF Framework and Forced-Directionality Graph Algorithm

values, after that find and replace the information

from synonym words. An Example of a redun-

dancy noun phrase, the "item" word will be consid-

ered similar to the "loan item" noun phrase. While

an examples of the similarity() function, if the sys-

tem has a class candidate "order" and "purchase,"

the word checking algorithm will choose one can-

didate class.

4. VISUALIZATION OF RELATIONSHIP USING

FDG

After the application has successfully extracted

the class diagram and its relation, a new problem

arises, namely how to draw a class diagram and

its relation automatically to the canvas. Canvas

uses position X, Y to place an object in it. The FDG

algorithm will calculate the position of X, Y object

automatically based on the number of objects and

the number of relations that will be visualized.

The Force-Directed GraphFDG algorithm uses

a spring model representation, where nodes are

considered charged objects that are connected

(attraction) with a line represented by a spring.

The charged objects attract (repulse) each other.

There are four main steps in the FDG Algor-

ithm[16]:

1. Calculate the repulsive force for each node.

2. Calculate the attractive force for all nodes

connected by lines.

3. Sum the repulsive and attractive forces.

4. Replace the nodes with a new position.

The Fruchterman and Reingold method[16] uses

the following equation to find the attractive and re-

pulsive forces:

  


(1)

 


(2)

In equation (1) d is the distance between 2

neighboring vertices. k is a constant for node

placement that distributes nodes evenly. The con-

stant k is stated by equation (3):







(3)

Area of a frame is the multiplication of the

length and width of the canvas area (Area), and

| V | the number of nodes to be drawn. Fruchter-

man and Reingold add a variable t to decrease tem-

perature/calculation formulated as

 


(4)

The t value is used to speed up the placement

of the new node because the frame width is reduc-

eds by one-tenth of the previous area.

5. IMPLEMENTATION

In the implementation section, we used the ATM

problem statement made by Rumbaugh[7]. This

problem statement has been used by previous

studies[5,6]. Here is a way to extract the class dia-

gram using the UML application that we have de-

veloped ourselves. First, users inputted the prob-

lem statement into the input column, shown in Fig.

4(left). The application shows the results of the

problem statement analysis, which was marked by

writing marked with color. The coloring makes it

easier for users to see the results of the class, at-

tributes, and operations that were successfully ex-

tracted by the application. Second, users will be

given a choice of class names that have been suc-

cessfully extracted and given a rating based on the

grammatical rules that were successfully fulfilled

by the classes. The user can delete the candidate

class by clicking on the checklist box column,

shown in Fig. 4(right).

Third, the user verifies every relation that be-

longs to a particular class, shown in Fig. 5(left).

Finally, the application will visualize the class dia-

gram along with the relation automatically, shown

in Fig. 5(right). The advantage of using the FDG

algorithm is that when the application places the

712 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 6, JUNE 2019

class diagram on the canvas, the connected class

will be close together, making it easier for users

to change the position of the class diagram. Users

can change the position of the class diagram, or

additional information from the class diagram itself.

6. EVALUATION

The standard definition of correctness for ex-

tracting requirement by NLP approach does not

exist. The standard guidelines to measure our

work by using the problem statement from books/

previous research. Books and previous research

considered to have true validity. We used the ATM

and library statement for performance evaluation.

The class diagram and relationship had extracted

by them used as the answer key. The answer key

used to validate our results. The evaluation ma-

trices used recall, precision, and over-specification.

The recall attends to compare the results produced

with an answer key table. Recall calculates the

missed results. The following is the formula for re-

call[5]:

  

 (5)

Ncorrect defines the value that matches to the

answer key. The Nmissing counts the number of

missing answers. Precision calculates how many

values do not match to the answer key[5].

Fig. 4. Wizard for input problem statement(left). Wizard for evaluation class candidate(right).

Fig. 5. Wizard for evaluation relationship(left). Visualization for the final results(right).

713Development of UML Tool using WPF Framework and Forced-Directionality Graph Algorithm

   

 (6)

The incorrect value is a result that is not in-

cluded in the answer key. In this study, the in-

correct value is defined as a class candidate from

the subject noun and not includes in the answer

key. The values that are not included in the answer

key but are included in requirements of grammar

rules are stated as Nextra to report over-specifica-

tion[5].

  

  (7)

In this section, the results used design rules

shown in table 1-4 are compared with our refining

method, which described in section 3.3. Table 5

shows the results of system performance evalua-

tions for three case studies. The answer key from

ATM case is as follows {consortium, bank, ac-

count, customer, central computer, bank com-

puter, cashier, cashier station, atm, remote trans-

action, cash card}. Our system produce class can-

didates are as follows {bank, cashier station, hu-

man cashier, automatic teller machine, compu-

terized banking network, atm, consortium, com-

puter, account, transaction, central computer, cash

card, user, customer}. Our system produce class

candidates are as follows {bank, cashier station,

human cashier, automatic teller machine, compu-

terized banking network, atm, consortium, com-

puter, account, transaction, central computer, cash

card, user, customer}.

The answer key of relationships for ATM case

consists of 10 implicit relations and 6 explicit

relations. When we are applying the design rules

from previous studies that shown in table 1-4 were

unable to detect the relationship of object preposi-

tions and relationship based on the relation of

words (dependency words). In ATM case consists

of two relationships which were defined by the ob-

ject of preposition. The recall and over-specifica-

tion score before refining were 66% and 100%.

After the application implemented the refining al-

gorithm, the score increased to 100%, and 100%

For redundancy words, the algorithm found one

word; [['cash', 'cash card', 13, 11]] . The class

candidate “cash” replaced by “cash card.”

The results for the library case[17] before refin-

ing show that recall, precision, and over-specifica-

tion are 50%, 100% and 25% respectively. After the

application used the refining method got 100%,

Table 4. Grammatical Rules to define composition type

No Grammatical Rules References

1 If two classes separate with “is-a” word. [9]

2
If two classes separate by list of generalization words such as “type of”, “categories
of”, “kinds of“.

[6]

Table 5. The performance evaluation of relationships candidate

Problem Statements

Score

Before Refining After Refining

Recall Precision
Over

Specification
Recall Precision

Over
Specification

Explicit[%] Explicit[%] Explicit[%] Explicit[%] Explicit[%] Explicit[%]

ATM[5] 66 100 100 100 100 100

Library Management
System[17]

50 100 25 100 100 25

Online Shopping[18] 80 100 50 100 100 50

714 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 6, JUNE 2019

100%, and 25%. The generalization relations in li-

brary problem statements related by dependency

words. If the application were only used design

rules shown in table 4, the system failed to define

relationships. After the application implemented

dependency parser method to find a relationship in

a sentence, it succeed to found generalization

relationships. The performance evaluation after re-

fining is 100%, 100%, and 25%. For redundancy

words found three words included in [['member',

'customer', 9, 0], ['item', 'loan item', 6, 3], ['loan',

'loan item', 13, 3]]. The “member” class candidate

replaced by “customer”, and “item”/“loan” replaced

by “loan item“. The exciting findings from the li-

brary case, the redundancy words affected the re-

sults of extraction as explained by the Harmain

[17]. His results showed incorrect values due to re-

dundancies and synonyms. Our system can tackle

these problems by using the refine redundancy

function to reduce similarity words.

The results of the application from Online

Shopping[18] show that recall, precision, and over-

specifications for class candidates are 80% , 100%,

and 50%. The performance results after refining

methods are 100%, 100%, and 50%. We have found

two relationships define by the object of preposi-

tions. For redundancy words we have found two

words [['order', 'customer order', 6, 5], ['item',

'line item', 10, 8]]. The “order” words replaced by

“customer order” and “item” word replaced by “line

item.”

7. CONCLUSION

When the application implemented the design

rules from previous studies, there were several

problems. The design rules could not detect rela-

tionships on the object of prepositions and com-

pound verb. Also, the design rules could not define

the connectedness that was illustrated through

word relations. After the application had used re-

fining methods, which were consists of check word

similarity, dependency parser, and object of prepo-

sitions, the results of performance evaluations

were increased. In addition. If the high accuracy

in determining the class candidate increased, it will

affect the relationships extraction. For the visual-

ization section, FDG algorithm is helpful to arrange

class diagram position and draw the relationships

in the canvas automatically.

REFERENCE

[1] R.S. Schach, Object-oriented Software Eng-

ineering, McGraw-Hill Publishers, Pennsyl-

vania, 2008.

[2] J. Mylopoulos, L. Chung, and Y. Eric, “From

Object-oriented to Goal-oriented Require-

ments Analysis,” Communications of the ACM,

Vol. 42, No. 1, pp. 31-37, 1999.

[3] A.Z. Utama and D.S. Jang, “An Automatic

Construction for Class Diagram from Problem

Statement Using Natural Language Process-

ing,” Journal of Korea Multimedia Society,

Vol. 22, No. 3, pp. 386-394, 2019.

[4] S. Hartmann and L. Sebastian, “English Sen-

tence Structures and EER Modeling,” Pro-

ceeding of ACM International Conference

Proceeding Series, Vol. 247, pp. 27-35, 2007.

[5] M. Elbendak, P. Vickers, and N. Rossiter,

“Parsed Use Case Descriptions as a Basis for

Object-oriented Class Model Generation,”

Journal of Systems and Software, Vol. 84, No.

7, pp. 1209-1223, 2011.

[6] V.B. Sagar, R. Vidya, and S. Abirami, “Con-

ceptual Modeling of Natural Language Func-

tional Requirements,” Journal of Systems and

Software, Vol. 88, pp. 25-41, 2014.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F.

Eddy, and W.E. Lorensen, Object Oriented

Modeling and Design, Prentice-Hall, New

Jersey, 1991.

[8] S.H. Lee and D.H. Hwang, “Tag Ranking

System Based on Semantic Similarity of Tag-

pair,” Journal of Korea Multimedia Society,

715Development of UML Tool using WPF Framework and Forced-Directionality Graph Algorithm

Vol. 16, No. 11, pp. 1305-1314, 2013.

[9] M. Ibrahim and R. Ahmad, “Class Diagram

Extraction from Textual Requirements Using

Natural Language Processing (NLP) Techni-

ques,” Proceeding of International Confer-

ence on Computer Research and Development,

pp. 200-204, 2010.

[10] G. Lucassen, M. Robeer, F. Dalpiaz, J.M.E.

Werf, and S. Brinkkemper, “Extracting Con-

ceptual Models from User Stories with Visual

Narrator,” Journal Requirements Engineer-

ing, Vol. 22. No. 3, pp. 339-358, 2017.

[11] B. Meyer, Object-oriented Software Con-

struction, Prentice Hall Publishers, New York,

1988.

[12] A. Dennis, B.H. Wixom, and D. Tegarden,

Systems Analysis and Design UML Version

2.0, Wiley Publishers, New Jersey, 2009.

[13] T.C. Lethbridge and R. Laganière, Object

Oriented Software Engineering: Practical Soft-

ware Development Using UML and Java,

McGraw-Hill Publishers, Pennsylvania, 2004.

[14] H. Herchi and W.B. Abdessalem, “From User

Requirements to UML Class Diagram,” Pro-

ceeding of International Conference on Com-

puter Related Knowledge, pp. 68-71, 2012.

[15] C. Arora, M. Sabetzadeh, L. Briand, and F.

Zimmer, “Extracting Domain Models from

Natural-language Requirements: Approach

and Industrial Evaluation,” Proceeding of the

ACM/IEEE 19th International Conference on

Model Driven Engineering Languages and

Systems, pp. 250-260, 2016.

[16] T.M. Fruchterman and E.M. Reingold, “Graph

Drawing by Force Placement,” Software: Prac-

tice and Experience, Vol. 21, No. 11, pp. 1129-

1164, 1991.

[17] H.M. Harmain and R. Gaizauskas, “CM-

Builder: an Automated NL-based CASE Tool,”

Proceedings ASE 2000, Proceeding of IEEE

International Conference on Automated Soft-

ware Engineering, pp. 45-53, 2000.

[18] Online Shopping, https://www.uml-diagrams.

org/examples/online-shopping-domain-uml-

diagram-example.html (accessed Feb., 15, 2019).

Ahmad Zulfiana Utama

Ahmad Zulfiana is a junior re-
searcher in space science center
at Indonesian National Institute
of Aeronautics and Space. He is
candidate master degree in Kei-
myung University. His areas of
interest include System Infor-

mation Development, Database, Visualization and
Natural Language Processing.

Duk-Sung Jang

He received the BS degree in
computer engineering from Kyung
pook National Univ., in 1979. He
also obtained the MS and PhD
degrees in computer engineer-
ing from Seoul National Univ.,
in 1981 and 1988 respectively.

He is currently a professor with the Dept. of Computer
Eng. at Keimyung Univ. His research interests include
Compiler, Natural Language Processing, and Voice
Recognition.

