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Abstract 

 
Reducing the interference to the licensed mobile users and obtaining the energy efficiency 

are key issues in cognitive heterogeneous networks. A corresponding rate loss constraint is 
proposed to be used for the sensing-based spectrum sharing (SBSS) model in cognitive 
heterogeneous networks in this paper. Resource allocation optimization strategy is designed 
for the maximum energy efficiency under the proposed interference constraint together with 
average transmission power constraint. An efficiency algorithm is studied to maximize  
energy efficiency due to the nonconvex optimal problem. Furthermore, the relationship 
between the proposed protection criterion and the conventional interference constraint 
strategy under imperfect sensing condition for the SBSS model is also investigated, and we 
found that the conventional interference threshold can be regarded as the upper bound of the 
maximum rate loss that the primary user could tolerate. Simulation results have shown the 
effectiveness of the proposed protection criterion overcome the conventional interference 
power constraint. 
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1. Introduction 

As multimedia data transmission becoming the mainstream, the mobile data traffic has 
increased dramatically in the wireless communication network, which requires greater 
spectrum resources to meet the growing demand for wireless communication applications. 
However, the recent reports by Federal Communications Commission (FCC) have shown 
that there is a persistent problem of low spectrum utilization in the licensed frequency bands. 
Cognitive radio (CR) [1] is an important technology for efficiently increasing the 
utilization of available radio spectrum. However, in order to meet the requirement of the 
multimedia data transmission, cognitive radio network is expected to be heterogeneous 
with different spectrum bands, heterogeneous cell structures and various services, that is 
named heterogeneous CR network. In heterogeneous CR network where the licensed bands 
are assigned to primary users (PU) and secondary users (SU) simultaneously in different 
cognitive radio networks, different SUs equipped with multiple radio access technologies can 
flexibly access the “available” spectrum, when the interference to PU could be tolerable. In 
general, the operation for heterogeneous CR systems has three types: i) opportunistic 
spectrum access (OSA) [2], where the secondary user can access the licensed bands that 
only detected as idle; ii) spectrum sharing (SS) [3], where the secondary user is allowed 
to share the licensed bands only when the quality of servise (QoS) of PU is protected; 
iii) sensing-based spectrum sharing (SBSS) [4] [5], where the secondary user chooses the 
appropriate transmit power according to the sensing results for PU. Due to the higher 
spectrum efficiency in the SBSS model, this paper will focus on the study in this model. 

Interference to the primary user has been regarded as one of the most challenging 
problems in heterogeneous CR networks and extensively investigated recently [6]-[13]. 
In [6], a common method that constrain the interference power during the SU transmission is 
proposed to protect the QoS of PUs. In [9], the tradeoff between interference alignment 
and the sum rate of SU is investigated in the multi-user multi-antenna CR networks. In 
[10], the nonstationary minimum-variance distortionless response beamformer is designed to 
perform the fast speed of convergence and solve the problem of interference to PU. The 
conventional interference power constraint by reducing the transmission power of SU has 
been always used to protect the interests of PU in many researches. In [11], a general 
multi-ring model in the heterogeneous CR network is proposed to investigate the 
relationship between the SUs’ distribution and the interference to PU. The interference 
generated from heterogeneous CR network is investigated by employing several 
strategies, such as the SU’s transmission power control, the secondary transmitters 
competitive strategy and the secondary receivers association scheme. It is well known that 
there are many factors that could cause the interference to PU, such as the secondary user 
deployment density and the channel characteristics between the secondary user and the 
primary user. However, it is unreasonable only from the SU’s perspective to minimize the 
interference to PU by the traditional interference power constraint or the distribution density 
of SU. In [13], the author proposed the rate loss constraint (RLC) for spectrum sharing 
model in CR networks. The new criterion is more directly related to the PU transmission and 
obtains improved capacity over the conventional criterion, compared to the conventional 
interference power constraint. However, the energy efficiency and adaptive power allocation 
was not considered in the obove-mentioned papers. 
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With the tremendous increasing requirement of multimedia data transmission and energy 
saving, energy efficiency (EE) has become the key issue for CR networks in recent 
researches [14]-[18]. In [14], energy consumption and access strategy is considered in both 
half-duplex and full-duplex CR network. In [15], the problem of numerous SUs accessing 
the licensed spectrum is considered. Energy efficiency problem under the communication 
rate constraint and transmission power constraint to maximize the feasible accessing number 
of SU is studied. In [16], the tradeoff between the secrecy throughput and the energy 
consumption with different spectrum access schemes is investigated in CR networks. The 
above studies performed the energy efficiency optimization problem based on the perfect 
channel state information (CSI) without considering the status of PU and only considered the 
single architecture in CR network. However, investigating the maximum energy efficiency 
problem with imperfect status information of PU for heterogeneous CR networks is 
meaningful. 

In this paper, we design the resource allocation optimization strategy include sensing time 
and power allocation to obtain the maximum energy efficiency for the sensing-based 
spectrum sharing model in multi-band OFDM cognitive heterogeneous network that employs 
simultaneous multiband detection. A sensing-based rate loss constraint (SRLC) under 
imperfect spectrum sensing as the new criterion in cognitive heterogeneous networks is 
proposed. An efficiency algorithm is studied to solve the nonconvex optimal problem of 
energy efficiency. Furthermore, the relationship between the proposed protection criterion 
and the conventional interference constraint is studied. Numerical simulation results have 
proved that the effectiveness of the proposed interference strategy is overcome the 
conventional interference temperature strategy.  

The main contributions of this study are summarized as follows: 
1） The sensing-based rate loss constraint based on the different sensing results for 

cognitive heterogeneous networks is proposed to protect the PUs and constrain SU, 
which makes it suitable for the sensing-based spectrum sharing model in cognitive 
heterogeneous networks, while [13] only considered SS model without sensing. 

2） The energy efficiency resource optimization problem for cognitive heterogeneous 
networks is studied under these two different schemes, (i) the SRLC and the 
transmission power constraint; (ii) the conventional interference and transmission 
power constraint. Considering the nonconvex optimization problem, this paper 
transforms the nonlinear stochastic fractional energy efficiency problem into the 
equivalent nonlinear parametric programming through theoretical demonstration. 

3） The relationship between the CRLC and the conventional interference power 
constraint under the imperfect spectrum sensing for the SBSS model is also 
investigated through theoretical demonstration, and we conclude that the interference 
power constraint threshold can be regarded as an upper bound of the maximum rate 
loss that the primary user could tolerate.  

The rest of this paper is organized as follows. The system model for multi-band OFDM 
cognitive heterogeneous network is introduced in Section 2. Section 3 and 4 present the 
energy efficiency resource allocation optimization strategies under two above-mentioned 
schemes. Section 5 studies the relationship between the CRLC and the conventional 
interference power constraint for the sensing-based spectrum sharing model. Section 6 
validates the effectiveness of the proposed strategy compared to the conditional strategy by 
numerical simulation results. Section 7 concludes the paper.  
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2. System Model 

 
Fig. 1. System model 

 
The cognitive heterogeneous networks which includes the primary base station (BS) and K 
primary femtocell is investigated, as depicted in Fig. 1. N secondary transmitter-receiver 
pairs (Tr-Re) sensing the status of the spectrum and access it, seperately. A licensed 
wideband OFDMA spectrum is considered to be divided into K non-overlapping narrowband 
channels that are allocated to K primary femtocell stations in the licensed network, 

denotes the set of subcarriers in the jth small cell which allocated to and one 
subcarrier can only be allocated to one PU, . Since PU may not occupy the 
licensed spectrum all the time, SU could access the spectrum according to the sensing results 
in the sensing- based spectrum sharing model. We assume that the channels are flat fading 
and the primary users’ signals are complex-valued PSK signals. The noise is assumed to be 
independent and identically distributed circularly symmetric complex Gaussian (CSCG) with 
zero mean and  variance. 

In cognitive heterogeneous network, the primary user may only utilize a part of the 
licensed band rather than a whole network due to massive access. Thus, the small cell signal 
at PU always transmits with a weak power at around 10-15mW and the transmission range of 
the PU signal is limited to only 150-200m. In this case, the detection range at SU is relatively 
small. To be more specific, if the location of SU is far from the PU in the jth small cell, the 
SU could not access the the jth channel. Only when the location of SU is within the detection 
range of , it can transmit data by accessing the jth subchannel and detect the status of 

. Therefore, each SU could access the corresponding set of the available channel 
according to the lotion of SU. For simplicity, this paper consider the case that only one 
secondary transmission pair and primary transmission pair exist in the jth small cell. 
Moreover, SU can access the ith subcarrier, where , ,  and  denote the 
channel power gain of the primary link, the secondary link, the link between SU-Tx and 
PU-Rx and the link between PU-Tx and SU-Rx in the jth small cell. 
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The energy detection scheme [19] is employed to perform simultaneous spectrum sensing 
for determining the status of each channel. The frame structure in this system consists of 
sensing slot τ and data transmission slot T τ− , as shown in Fig. 2.  

 

Sensing Sensing
Data 

Transmission
Data 

Transmission

Frame n Frame n+1

τ τT-τ T-τ

 

Fig. 2. Frame structure of the cognitive heterogeneous network 
 

The detection of the channel status is a foremost task, which the frequency band is idle 
( 0, jH ) or active ( 1, jH ). The probability of detection and false alarm for the jth channel is 
given by: 
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Where jε  is the decision threshold on the jth channel, jγ represents the signal-to –noise 
ratio (SNR) of the primary user received at the secondary user on the jth channel, and sf  is 

the sampling frequency. The target detection probability is assumed to be , ,( , )d j j d jp Pτ ε −= .  

3. Optimal EE under the sensing-based rate loss constraint 
The sensing-based rate loss constraint is proposed in this section. The resource allocation 
optimal problems of energy efficiency are formulated with the sensing-based rate loss 
constraint and the average transmission power constraint for the sensing-based spectrum 
sharing model.  
 

Table 1. Four possible scenarios for the SBSS model 
PU’s actual 

status 
Decision 

result Related  probability Power Rate 

Idle 0, jH  ( )0, ,( ) 1 ( , )j fa j jP H p τ ε−  ( ,0)
,
s

i jP  00, jr  

Idle 1, jH  0, ,( ) ( , )j fa j jP H p τ ε  ( ,1)
,
s

i jP  01, jr  

Active 0, jH  ( )1, ,( ) 1 ( , )j d j jP H p τ ε−  ( ,0)
,
s

i jP  10, jr  

Active 1, jH  1, ,( ) ( , )j d j jP H p τ ε  ( ,1)
,
s

i jP  11, jr  

 
In order to achieve the higher spectrum efficiency, SU adapts its transmission power 

according to the detection results in the cognitive heterogeneous network. If the jth 
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frequency band is detected to be idle ( 0, jH ), SU transmits with high power ( ( ,0)
,
s

i jP ), whereas 
if it is detected to be active ( 1, jH ), SU transmits with low power ( ( ,1)

,
s

i jP ). However, due to the 
limitation of the spectrum sensing techniques, the spectrum sensing is not a perfect function. 
Thus, according to the real state of PU and the sensing results, there are four possible 
scenarios for this model, as listed in the Table 1. 

The four scenarios for the transmission state of SU in the abovementioned table are 
analyzed as follows: 

If the spectrum is idle and PU is detected to be inactive, then SU will transmit with high 
power (0)

,s jP . The probability of this scenario is ( ), 0, ,( ) 1 ( , )o j j fa j jP H pα τ ε= − , where 0,( )jP H  
denotes the probability that the jth spectrum band is idle. The instantaneous transmission 
capacity is: 

                        
( ,0)
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j

s
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g P
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If the spectrum is idle but PU is detected to be active, then SU will transmit with low 
power (1)

,s jP . The probability of this scenario is 1, 0, ,( ) ( , )j j fa j jP H pα τ ε= , and the instantaneous 
transmission capacity is : 
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If the spectrum is busy and PU is detected to be inactive, then SU will transmit with high 
power (0)

,s jP . The probability of this scenario is ( )0, 1, ,( ) 1 ( , )j j d j jP H pβ τ ε= −  where 1,( )jP H  
denotes the probability that the jth spectrum band is active. The instantaneous transmission 
capacity is: 
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If the spectrum is busy and PU is detected to be active, then SU will transmit with low 
power (1)

,s jP . The probability of this scenario is 1, 1, ,( ) ( , )j j d j jP H pβ τ ε= . The instantaneous 
transmission capacity is: 

                       
( ,1)

, ,
11, 2

, , 0

= log 1 .
j

s
ss i i j

j
i ps i p i

g P
r

g P N∈Κ

 
+  + 

∑                               (6) 

To effectively protect the QoS of PU, the sensing-based rate loss constraint based on the 
detection results in the SBSS model is proposed. The rate loss of PU caused by SU’ s 
transmission occurred in nothing but the data transmission slot, so we only focus on the data 
transmission slot in the following studies.  

When the SU could not access the licensed band, the transmission rate of jPU  in the 
data transmission slot T τ−  on the jth channel is given by 

                , ,
1, 2

0

( ) log 1 , {1,2,..., } .
j

pp i p ip
j j

i K

g PTR P H j M
T N
τ

∈

 −
= + ∀ ∈ 

 
∑                (7) 

Where ,p iP represents the transmission power of the jth PU. 

When the SU access the licensed band, the PU will suffer from the potential interference. 
The interference to PU may occur in two cases: 1) missed detection, when the PU is falsely 
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detected to be idle; 2) correct detection, when the PU is correctly detected to be active. As a 
result, the average rate of jPU  can be formulated as： 

0, 1,
, , , ,1 1( ,0) ( ,1)

0 , 0 ,, ,
log log , {1,2,..., } .2 2

j

s
j j j

g P g Ppp i p i pp i p i
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TR j M
T i K
τ β β
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+ +   

   + +
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−
= + ∀ ∈∑

∈
(8)                                       

Then the average rate loss of jPU can be expressed p s
j jR R− ， and the sensing-based rate 

loss constraint under the imperfect spectrum sensing for SBSS model in cognitive 
heterogeneous network can be defined as 

                      {1,2 M } ,p s
j j jR R R j− ≤ ∆ ∀ ∈， ，. . . ,                           (9) 

Where jR∆ represents the maximum rate loss that PU can tolerate. 

Let {1,2 M }p
j j jR R R j= − ∆ ∀ ∈， ，. . . , , the sensing-based rate loss constraint can be 

rewritten as  
                        {1,2 M } .s

j jR R j≥ ∀ ∈， ，. . . ,                              (10) 

Furthermore, the average transmission power constraint should be taken into account to 
keep long-term transmission. The average transmit power constraint can be given by:               

( ) ( )( ,0) ( ,1)
, 0, , 1, 1, ,

1
,

j

M
s s
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Where avP  represents the maximum average transmission power of SU. 
The average rate of the jth SU for the SBSS model can be expressed as:  

( )(0) (1)
, 00, 1, 01, 0, 10, 1, 11,, , ( ) .j s s o j j j j j j j j

TC P P r r r r
T
ττ α α β β−

= + + +              (12) 

In the sensing slot, the energy consumption for SU transmission is: 
( ) ( ) ,s

S sE Pτ τ=                                       (13) 

Where ( )s
sP denotes the power consumption of sensing. 

In the transmission slot, the energy consumption for SU transmission is: 
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Then the energy efficiency for the SBSS model in cognitive heterogeneous network with 
“bite per joule” is: 
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Where CE  is the circuit power consumption derived from signal processing, battery 
backup, and others. 

Thus, the energy efficiency resource allocation with imperfect sensing results under the 
sensing based rate loss constraint and transmission power constraint in cognitive 
heterogeneous networks can be formulated as follows: 

( )
(0) (1)

(0) (1)

{ , , }
max , , ,

s s
EE s s

P P
U P P

τ
τ                               (16)                                              

Subject to (10), (11), ( ,0) ( ,1)
, ,0, 0,0 1,..., .s s

i j i jP P T j Mτ≥ ≥ ≤ ≤ =，   
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Due to the nonconvex problem of the objective function, we could not employ the convex 
optimization algorithm to obtain the optimal sensing time directly. However, considering the 
sensing time lies within the interval（ 0， T， , the optimal sensing time can be acquired by 
one-dimensional exhaustive search as follows: 

( )(0) (1)= arg max , , .EE s sU P Pτ τ∗                               (17) 

Lemma 1. Function ( )(0) (1), ,EE s sU P Pτ ∗ is strictly quasi-concave in ( ,0)
,
s

i jP , ( ,1)
,
s

i jP , respectively. 
Proof: See Appendix A. 

Accordingly, the strictly quasi-concave function ( )(0) (1), ,EE s sU P Pτ ∗ has a unique globally 
optimal transmission power.  

The optimal energy efficiency problem can be associated with the following function 
problem F( )q  for the optimal sensing timeτ ∗ : 

( ) ( ) ( )
( ,0) ( ,1)
, ,

(0) (1) (0) (1)
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where q R∈  is a parameter. 
Theorem 1. ( ,0) ( ,1)

, ,( , )s s
i j i jP P∗ ∗， ， is the optimal solution of (16) associated with the maximum 

value *q if and only if * * ( ,0) ( ,1)
, ,F( ) F( , , ) 0s s

i j i jq q P P∗ ∗= =， ， . 
Proof: See Appendix B. 

The equivalent objective function is convex with respect to the transmit powers 
( ,0)
,
s

i jP and ( ,1)
,
s

i jP . However, equation (11) makes it a non-convex optimization problem, so the 
optimal problem cannot be solved by considering the Lagrange dual problem. To solve the 
problem, the lemma is given as follows. 

Lemma 2. The equivalent objective function optimization problem satisfies the 
Time-Sharing Property when subcarriers jκ  goes to infinity. 
Proof: See Appendix C. 

The time sharing property implies that the duality gap for the equivalent optimization 
problem is negligible with realistic number of subcarriers and it can be solved by the  
Lagrange dual method.   

The Lagrangian function of F( )q  with respect to ( )( ,0) ( ,1)
, ,,s s

i j i jP P for a fixed sensing time is 
derived as: 
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Where λ and jµ are the lagrangian multipliers. The dual objective function can be 

expressed as: 
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Where  
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For a fixed sensing time, the equalization optimization problem respecting to the 
transmission power ( ,0)

,
s

i jP and ( ,1)
,
s

i jP  is convex, respectively. So we can solve the problem by 
using the dual decomposition method. In the following, it is observed that the joint 
optimization problem can be decomposed into two optimization subproblems, SP1 and SP2. 
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 +
 

−  + − − + 
 

−
+

∑ ∑∑

∑ ∑
          (22) 

By giving their Lagrangian functions and employing the Karush-Kuhn-Tucher (KKT) 
conditions, the optimal power allocation is obtained by the theorems as follows: 

Theorem 2. The optimal transmission power under the sensing-based rate loss constraint 
equals to{ }( ,0)

, , 0s
i jP , where ( ,0)

,
s

i jP is the solution of    

( )( ) ( )( )
, , 0, , 0, , , ,

, 0,( ,0) ( ,0) ( ,0) ( ,0)
, , , , 0 , , 0 , , , , 0 , ,

+ = + + + .
1+ + +

o j ss i j ss i j j pp i sp i p i
o j js s s s

ss i i j ps i p i ss i i j pp i p i sp i i j sp i i j

g g g g P
qT

g P g P N g P N g P g P N g P

α β µ β
λ α β

+ + +

Theorem 3. The optimal transmission power under the sensing-based rate loss constraint 
equals to{ }( ,1)

, , 0s
i jP , where ( ,1)

,
s

i jP is the solution of    

( )( ) ( )( )
1, , 1, , 1, , , ,

1, 1,( ,1) ( ,1) ( ,1) ( ,1)
, , , , 0 , , 0 , , , , 0 , ,

+ = + + + .
1+ + +

j ss i j ss i j j pp i sp i p i
j js s s s

ss i i j ps i p i ss i i j pp i p i sp i i j sp i i j

g g g g P
qT

g P g P N g P N g P g P N g P

α β µ β
λ α β

+ + +

According to the Theorem 2 and 3, the transmission power ( )( ,0) ( ,1)
, ,,s s

i j i jP P for fixed q, 
λ and jµ could not obtained directly. The bisection search method should be used to solve the 
problem. However, the bisection search range of the transmit power should be identified.  

Proportion 1. the transmission power ( ,0)
,
s

i jP  for fixed q, λ and jµ exists in the range of 

[ ]0,φ , where ( ) ( )( ), 0,= + +o j jF qTφ λ α β  only if the left hand side function and the right hand 
side function in the Theorem 2 satisfying ( ) ( )0 0F H≥ . 
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Proof: See Appendix D. 
The transmission power in the theorem3 ( ,1)

,
s

i jP can also be obtained by using the same 
method. The energy efficiency optimal algorithm is given by the following subgradient 
algorithm. 

Algorithm 1: Energy-Efficient Resource Allocation Optimization Algorithm 

For 0 :τ = T  
1 Initialization q=0, j=1 
2 Repeat {Outer iteration} 
3  Initialization λ，k=1 
4  Repeat {Outer iteration} 
5   Initialize μ , l=1 
6   repeat {Inner iteration} 
7     Solve (22) (23) for each subcarrier by bisection search according to Proportion 1 

        and obtain ( )( ,0) ( ,1)
, ,,s s

i j i jP P , update , 1j lµ + by ( ),
s

j l j jR Rµ ν− − . 
8   Until μConverge; 
9  Compute the subgradiernt ( , )g λ ∗μ

 for the converged μ  by 

    ( ) ( )( ,0) ( ,1)
, 0, , 1, 1, ,

1

ˆ

j

M
s s

av o j j i j j j i j
j i

TP P P
T
τ α β α β

= ∈Κ

−
−

+ + +∑∑  

10  Update 1lλ +  by ( ) ( )( ,0) ( ,1)
1 , 0, , 1, 1, ,

1

ˆ

j

M
s s

k k av o j j i j j j i j
j i

TP P P
T
τλ λ ς α β α β+

= ∈Κ

−
 −

= − + + +  
 

∑∑ . 

11  until 1k kλ λ ε+ − ≤  
12 compute ( ,0) ( ,1)

, ,F( , , )， ，∗ ∗s s
i j i jq P P  and stop when ( ,0) ( ,1) ( ,0) ( ,1)

1 , , , ,F( , , ) F( , , ) .， ， ， ， ϑ∗ ∗ ∗ ∗
+ − ≤s s s s

j i j i j j i j i jq P P q P P  
 

For obtaining the optimal transmission power ( )( ,0) ( ,1)
, ,,s s

i j i jP P , we proposed an optimal 
solution in Theorem 2 and 3 which is solved by exhaustive search and hence has a very high 
complexity. Furthermore, the bisection search range of the transmit power is proved in 
Proposition 1 to reduce the complexity. According to the abovementioned algorithm 1, the 
transmission power ( ,0)

,
s

i jP and ( ,1)
,
s

i jP  in Theorem 2 and 3 should be obtained by using 
bisection method with the complexity ( )( )22 logο δ , whereδ is the required accuracy. The 
updates of lagrange multipliers λ andμ in each iteration of the algorithm 1 for each secondary 
transmission pair on each subcarrier need ( )( )22 logο δKM . As a result, the complexity of the 

proposed energy efficiency optimal algorithm is ( )( )2 2
m 22 logο δT K M , where mT is the 

maximum iteration times and a polynomial function of 2 2K M . Additionally, mT can be very 
small when the initial values of lagrange multipliers λ andμ are well chosen.  

4. Optimal EE under the conventional interference power constraint   
In this section, we use the conventional interference power constraint to protect PU in the 
same system model. However, due to the limitation of spectrum sensing techniques, it is not 
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evitable that there would be a case of missed detection. Then the conventional interference 
power constraint under imperfect sensing results can be written as  

 ( ,0) ( ,1)
0, , , 1, , ,

1
, 1,..., ,

j

M
s s

j sp i i j j sp i i j
j i

T g P g P j M
T
τ β β

= ∈Κ

−
+ ≤ Γ =∑∑                 (23) 

Where Γ is the maximum interference power that the PU could tolerate. 
To keep the long-term power budget of SU, the transmit power constraint is also used. 

Then, it is given by (11) in section Ⅲ.  
Thus, the maximum energy efficiency for the SBSS model under the conventional 

interference constraint can be formulated as:  

 ( )
( )

( ) ( )

(0) (1)

1(0) (1)
(0) (1)

, ,
, , ,

, ,

M

j s s
j

EE s s
S s s S C

C P P
U P P

E P P E E

τ
τ

τ τ
==

+ +

∑                 (24) 

Subject to (11), (23), ( ,0)
, 0,s

i jP ≥ ( ,1)
, 0,s

i jP ≥  0 1,..., .T j Mτ≤ ≤ =，   

The optimal sensing time also could not be obtained directly by the convex optimization 
algorithm. So the one-dimensional exhaustive search method could be employed to solve the 
sensing time optimization problem. Furthermore, we focus on finding the optimal power 
allocation ( )( ,0) ( ,1)

, ,,s s
i j i jP P∗ ∗ that maximizes the energy efficiency under the conventional 

interference constraint. 
However, The energy efficiency optimal problem can also be transformed into a 

equivalent function problem F( )q  for the fixed sensing time τ .Then, by giving the 
Lagrangian ( )(0) (1), , ,s sL P P λ µ and employing the KKT condition the optimal transmission 
power under the conventional interference constraint could be expressed in the two 
following theorems. 
Theorem 4. The optimal transmission power when the spectrum is detected to be idle 
can be obtained as: 

                             
(0) (0)
, ,(0)

, (0)
,

=[ ] ,
2

i j i j
i j

i j

B
P

A
+

+ ∆
                        (25) 

where [x]+ denotes max(x,0) ,  
(0) 2
, 0, 0, 0, , ,

(0) 2
, 0, 0, , 0, 0, 0, , , , 0 ,

(0) (0) 2 (0) (0)
, , , ,

(0)
, 0, 0, 0, , 0

=[ ( )+ ]g ,

( )g [ ( )+ ]( 2 ) ,

( ) 4 ,

[ ( )+ ]

i j j j j j sp i ss i

i j j j ss i j j j j sp i ps i p i ss i

i j i j i j i j

i j j j j j sp i

A qT g

B qT g g P N g

B A C

C qT g N

λ α β µ β

α β λ α β µ β

λ α β µ β

+ +

= + − + + +

∆ = −

= + +

( )

( )

( ) ( ), , 0 0, , , , 0 0, , 0( ) ( ) .ps i p i j ss i ps i p i j ss ig P N g g P N g Nα β+ − + +

 

Theorem 5. The optimal transmission power when the spectrum is detected to be active 
can be obtained as: 

(1) (1)
, ,(1)

, (1)
,

=[ ] .
2

i j i j
i j

i j

B
P

A
+

+ ∆
      (26) 

where 
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(1) 2
, 1, 1, 1, , ,

(1) 2
, 1, 1, , 1, 1, 1, , , , 0 ,

(1) (1) 2 (1) (1)
, , , ,

(1)
, 1, 1, 1, , 0

=[ ( )+ ]g

( )g [ ( )+ ]( 2 ) ,

( ) 4 ,

[ ( )+ ]

i j j j j j sp i ss i

i j j j ss i j j j j sp i ps i p i ss i

i j i j i j i j

i j j j j j sp i

A qT g

B qT g g P N g

B A C

C qT g N

λ α β µ β

α β λ α β µ β

λ α β µ β

+ +

= + − + + +

∆ = −

= + +

( ) ，

( )

( ) ( ), , 0 1, , , , 0 1, , 0( ) ( ) .ps i p i j ss i ps i p i j ss ig P N g g P N g Nα β+ − + +

 

According to Theorem 1, the optimal transmission power ( )( ,0) ( ,1)
, ,,s s

i j i jP P∗ ∗  under the 
conventional interference constraint is obtained by finding the root for the equivalent 
function, * (0),* (1),*

, ,F( , , ) 0k i k iq P P = . For fixed λ and jµ , the resource allocation optimal strategy 
for the maximum energy efficiency is obtained.  

5. Relationship between the two constraints with imperfect sensing  
The sensing-based rate loss constraint for cognitive heterogeneous networks is derived. 
However, the relationship between the proposed protection criterion and the conventional 
interference constraint with imperfect spectrum sensing results is necessary to be 
investigated. In this section, the interference power constraint is proved that could serve as 
an upper bound of the maximum rate loss that PU could tolerate in SBSS model. 

The per subcarrier based interference power constraint at the jth PU is written as:  

( ) { }( ,0) ( ,1)
, 0, , , 1, , , , , 1,..., .s s

sp i j i j sp i j i j i j j
T g P g P i j N

T
τ β β−

+ ≤ Γ ∈Κ ∈            (27) 

Where ,i jΓ  denotes the maximum interference power that jPU  in ith subcarrier can tolerate.  
Theorem 6. The maximum rate loss of jPU  based imperfect spectrum sensing results is 

upper-bounded by ,
0 ln 2

j
i j

K
N

Γ , if the interference threshold of the ith subcarrier ,i jΓ  exists at 

the jth PU as (28).   
Proof: See Appendix E. 
Therefore, the sensing based rate loss constraint  

 
0

, .
ln 2

jp s
j j i jR R

N
−

Κ
≤ Γ                                   (28) 

 It is seen from the above proof, the maximum rate loss of PU is upper-bounded by 

,
0 ln 2

j
i j

K
N

Γ . If the upper bound meets 
0

,ln 2
j

i j jR
N
Κ

Γ ≤ ∆ , then the sensing based rate loss 

constraint is clearly satisfied. Therefore, if we choose the interference threshold 

, 0= ln 2 j
i j

j

R
N

∆
Γ

Κ
, the rate loss at the jth PU would be less than jR∆ .  

6. Simulation results  
The optimal system performance of SBSS cognitive heterogeneous network under the two 
above-mentioned constraint schemes is numerically evaluated in this section, respectively. 
The channel power gains are assumed to be exponentially distributed random variables 
with unit mean. The noise variance is set to 1. The frame duration is chosen to be T=100 
ms, and the transmit power of PU is assumed to be 10 dB. The number of the subcarriers 
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is 128. The bandwidth of each subcarrier is 10KHz. The circuit power and the sensing 
power are set to be 0.4 W and 0.2 W, respectively. 

Fig. 3 presents energy efficiency versus the sensing time of SU for several values of the 
transmission power constraint avP  under the two above-mentioned constraint schemes, the 
proposed protection criterion and the conventional interference constraint. The rate loss 
threshold that PU can tolerate is set to be 20% and the probability that the jth channel is idle 
is 0,( )=0.6jP H . For the conventional power constraint based on the per subcarrier case, the 
interference thresholds are chosen as , 0= ln 2 /i j j jN RΓ ∆ Κ which guarantees the fairness that 
the upper bounds of PU’s rate loss are the same as the proposed protection constraint case. It 
is observed that the energy efficiency is convex with respect to the sensing time and the 
optimal sensing time for all four sets of parameters is almost around 7 ms under the sensing 
based rate loss constraint. The energy efficiency also increases with avP  under interference 
power constraint, but the optimal sensing time for the four sets of parameters is almost 
around 10 ms. As seen from Fig. 4, the energy efficiency under the two constraint schemes 
increases with avP and the difference of the energy efficiency is obvious, when avP  is large. 
This is because that the sensing-based rate loss constraint gradually becomes the dominant 
constraint with the increase of avP . The optimal sensing time under the sensing-based rate 
loss constraint is slightly smaller than that under the interference power constraint and 
slightly increases with  avP  increasing. Therefore, the sensing-based rate loss constraint is 
more suitable for the SBSS model than the interference power constraint.  

In Fig. 4, the EE versus the rate loss of PU is presented for various values of the 
number of SU under different sensing scenarios. The sensing scenarios include two 
cases: (1) perfect sensing when the SBS correctly senses the status of PU, Pd=1, Pf =0; 
(2) imperfect sensing due to the limitation of sensing technology results in missed 
detection and false alarm, Pd <1. The maximum average transmit power Pav is set to be 5 
dB, and the probability of false alarm Pf  is 0.001. The sensing time is assumed to be the 
optimal sensing time, which is 7 ms. Owing to the reality of false alarm and 
misdetection, EE in perfect sensing scenario is always higher than that in imperfect 
sensing scenario. Fig. 4 shows that EE increases with the number of SU increasing. EE 
increases slowly when the rate loss constraint threshold becomes higher in value. This 
condition is reasonable because the interference power constraint is not the main limit 
for the maximum EE when the interference power constraint threshold is a higher power. 

In Fig. 5, the EE versus the interference power constraint threshold Γ  is presented 
for various values of the probability P(H0) under the two constraint schemes, the proposed 
protection criterion and the conventional interference constraint. The sensing time is set to 
be 7 ms and the probability of false alarm Pf is assumed as 0.001. The maximum average 
transmission power threshold is assumed as P 5av dB= . For fair comparison, the 
interference thresholds are chosen as , 0 ln 2j i j jR N∆ = Γ Κ . EE under the two conditions 
increases with the interference constraint respectively. However, EE does not increase 
when the interference power constraint threshold Γ  becomes larger since the 
interference power constraint would not be the dominating constraint for the EE when it 
becomes larger. But EE increases with the interference power constraint threshold Γ  
becoming larger. For the same probability P(H0), the EE under the sensing-based rate loss 
constraint is always higher than that under the interference power constraint. This finding 
is attributed to the facts that SU under the sensing-based rate loss constraint could adjust 
transmission power according to the transmission rate of PU. However, when the 
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probability P(H0) is 0.9, the EE under the sensing-based rate loss constraint is slightly 
larger than that under the conventional interference power constraint. This finding is 
attributed to the facts that when the probability P(H0) is higher, the sensing-based rate loss 
constraint is almost same as the conventional interference power constraint. However, the 
proposed rate loss constraint is more effective compared with the conventional constraint. 
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Fig. 3. The EE versus the sensing time under different interference constraints  
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Fig. 4. The EE versus rate loss under different sensing scenarios 
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Fig. 6. Convergence performance of the proposed protection. 

 
In Fig. 6, the convergence performance under the proposed constraint have been shown, 

in terms of the SU’s transmission power and the PU’s rate loss versus the number of 
iterations. It is obviously to find that the proposed protection criterion could achieve 
convergence with small iterations, that indicates a good real-time performance could be 
achieved for practical applications. As seen from Fig. 6, the proposed protection strategy can 
well protect the interests of the primary user because the rate loss that the primary femtocell 
station can tolerate could not be exceeded. 
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7. Conclusion  
The sensing-based rate loss constraint is proposed to be used as a new criterion for SBSS 
cognitive heterogeneous network in the present work. The resource allocation optimization 
to maximize energy efficiency under the proposed protection criterion and the conventional 
interference constraint is designed, respectively. It is proved that under imperfect spectrum 
sensing situation, the energy efficiency under the new proposed scheme is significantly 
improved compared with that under the conventional one. The relationship between the 
proposed protection criterion and the conventional interference constraint has also been 
investigated. It is proved that the interference power threshold can be regarded as an upper 
bound of the maximum rate loss that the PU could tolerate. Simulation results have also 
indicated the effectiveness of the proposed algorithm.  

APPENDIX A 

Denote the upper contour sets of ( )(0) (1), ,EE s sU P Pτ ∗ as: 
( ,0) ( ,1) ( ,0) ( ,1)
, , , ,S { 0, 0 | ( , ) }.s s s s

i j i j EE i j i jP P U P Pρ ρ= ≥ ≥ ≥                    (29) 

( )(0) (1), ,EE s sU P Pτ ∗ is strictly quasi-concave respect to ( ,0)
,
s

i jP , ( ,1)
,
s

i jP , respectively, if and 
only if Sρ is strictly convex for any real number ρ . 

 When 0ρ < , no points exist on the contour ( )(0) (1), ,EE s sU P Pτ ρ∗ = . When 0ρ = , 

only ( ,0)
, 0s

i jP = and ( ,1)
, 0s

i jP = is on the contour ( )(0) (1), ,EE s sU P Pτ ρ∗ = . When 0ρ < , Sρ is 
equivalent to: 

( ) ( ) ( )( ,0) ( ,1) (0) (1) (0) (1)
, ,

1
S { 0, 0 | ( , , ) , , 0}.

M
s s

i j i j S s s S C j s s
j

P P E P P E E C P Pρ ρ τ τ τ
=

= ≥ ≥ + + − ≤∑         (30) 

 Proving that ( ) ( ) ( )(0) (1) (0) (1)

1
( , , ) , ,

M

S s s S C j s s
j

E P P E E C P Pρ τ τ τ
=

+ + −∑ is strictly convex respect 

to ( ,0)
,
s

i jP , ( ,1)
,
s

i jP , is easy. Hence, Sρ is strictly convex and ( )(0) (1), ,EE s sU P Pτ ∗ is strictly 
quasi-concave respect to ( ,0)

,
s

i jP , ( ,1)
,
s

i jP . 

APPENDIX B 

If ( ,0) ( ,1)
, ,( , )s s

i j i jP P∗ ∗ is the optimal solution of (16) associated with the maximum value *q , 
then: 

( )
( ) ( )

(0) (1)

1*
(0) (1)

ˆ, ,
.

ˆ ˆ, ,

M

j s s
j

S s s S C

C P P
q

E P P E E

τ

τ τ

∗ ∗

=

∗ ∗
=

+ +

∑
                         (31) 

This equation implies that 

( ) ( ) ( )

( ) ( ) ( )

(0) (1) * (0) (1)

1

(0) (1) * (0) (1)

1

ˆ ˆ ˆ, , ( , , ) 0 ,

ˆ ˆ ˆ, , ( , , ) 0 .

M

j s s S s s S C
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M

j s s S s s S C
j

C P P q E P P E E

C P P q E P P E E

τ τ τ

τ τ τ

∗ ∗ ∗ ∗

=
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=

− + + =

− + + ≤

∑

∑
                (32) 
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Then conclude * ( ,0) ( ,1)
, ,F( , , ) 0s s

i j i jq P P∗ ∗ =， ， . 

If * * ( ,0) ( ,1)
, ,F( ) F( , , ) 0s s

i j i jq q P P∗ ∗= =， ， , then * ( ,0) ( ,1) * ( ,0) ( ,1)
, , , ,F( , , ) F( , , )s s s s

i j i j i j i jq P P q P P∗ ∗≤ ， ， . 

Then:  

( )
( ) ( )

( )
( ) ( )

(0) (1) (0) (1)

1 1* *
(0) (1) (0) (1)

ˆ ˆ, , , ,
; .
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M M

j s s j s s
j j

S s s S C S s s S C

C P P C P P
q q

E P P E E E P P E E

τ τ

τ τ τ τ
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           (33) 

Thus (0),* (1),*
, ,( , )k i k iP P is the optimal solution of (3) with the maximum value *q . 

APPENDIX C 
Proof: when jκ is enough large, channel conditions in adjacent subcarriers are often 

similar. Let ( )( ,0, ) ( ,1, )
, ,
s x s x

i j i jP P∗ ∗， and ( )( ,0, ) ( ,1, )
, ,
s y s y

i j i jP P∗ ∗， be the optimal transmission power 
allocation schemes for the energy efficiency optimization problem with rate loss 
constraints ,x jR and ,y jR . The new power allocation strategy ( )( ,0, ) ( ,1, )

, ,
s z s z

i j i jP P， is constructed in 

the following way: let power allocation meet ( ) ( )( ,0, ) ( ,1, ) ( ,0, ) ( ,1, )
, , , ,=s z s z s x s x

i j i j i j i jP P P P∗ ∗， ， in the χ  

proportion of the subcarriers and ( ) ( )( ,0, ) ( ,1, ) ( ,0, ) ( ,1, )
, , , ,=s z s z s y s y

i j i j i j i jP P P P∗ ∗， ，  in the ( )1 χ−  proportion 
of the subcarriers. Then a new power allocation strategy in the sensing based rate loss 
constraint can be achieved as follows: 

, , , , ,log 1 log 10, 2 1, 2( ,0, ) ( ,1, )1 0 , 0 ,, ,

, , , ,log 1 log 10, 2 1, 2( ,0, )
0 , 0 ,,

      =

s z
j

K j g P g Ppp i p i pp i p i
j js z s zi N g P N g Psp i sp ii j i j

g P g Ppp i p i pp i p i
j js xN g P N gsp i sp ii j

TR
T

T
T

β β

β β

τ

τ

   
   ∑ + + +   

= + +   
   

 
 + + + 

+ + 
 

−
=

−
( ,1, )1 ,

, , , ,log 1 log 1 .0, 2 1, 2( ,0, ) ( ,1, )1 0 , 0 ,, ,

K j

s xi Pi j

K j g P g Ppp i p i pp i p i
j js y s yi K N g P N g Pj sp i sp ii j i j

T
T

χ

β β
χ

τ

 
 ∑  

=  
 

   
   ∑+ + + +   

= + + +   
   

−

           (34) 

When the number of subcarriers is the law of large number, we have: 
( ), , ,1 .s z s x s y

j j jR R Rχχ + −=                              (35) 
Due to ( )( ,0, ) ( ,1, )

, ,
s x s x

i j i jP P∗ ∗， and ( )( ,0, ) ( ,1, )
, ,
s y s y

i j i jP P∗ ∗， be the optimal power allocation schemes for 
the energy efficiency maxization problem, the power allocation schemes satisfy rate loss 
constraint ,x jR and ,y jR .Then the following conclusion would be have: 

  

, , , ,log 1 log 10, 2 1, 2( ,0, ) ( ,1, )1 0 , 0 ,, ,

, , , ,log 1 log 10, 2 1, 2( ,0, ) ( ,1, )
0 , 0 ,, ,

K j g P g Ppp i p i pp i p i
j js x s xi N g P N g Psp i sp ii j i j

g P g Ppp i p i pp i p i
j js y s yN g P N g Psp i sp ii j i j

T
T

T
T

χ
β β

β β

τ

τ

   
   ∑ + + +   

= + +   
   

 
 + + + + 

+ + 
 

−

−

( )

1

1 .x y
j j

K j

i K j

R R

χ

χ χ

 
 ∑  

= +  
 

≥ + −

           (36) 

Therefore, it is clear that ( ), 1s z x y
j j jR R Rχ χ≥ + − . 
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APPENDIX D 

Proof: The right hand side function ( )( ,0)
,
s

i jF P  and the left hand side function ( )( ,0)
,
s

i jH P  in 
the Theorem 2 is monotonically decreasing respect to the transmission power ( ,0)

,
s

i jP . For 
fixed q, λ and jµ , the following conclusion should be have. 

(0)
,

, , 0, ,
( ,0) ( ,0)

, , , , 0 , ,

lim + 0 ,
1+ +k i

o j ss i j ss i
s sP

ss i i j ps i p i ss i i j

g g
g P g P N g P
α β

→+∞
=

+
                      (37) 

( )( ) ( )( ) ( )( )(0)
,

0, , , ,
, 0, , 0,( ,0) ( ,0)

0 , , , , 0 , ,

lim + + + + + .
+k i

j j pp i sp i p i
o j j o j js sP

pp i p i sp i i j sp i i j

g g P
qT qT

N g P g P N g P

µ β
λ α β λ α β

→+∞
=

+ +
  (38) 

Therefore, the two function should have the point intersection only if 
satisfying ( ) ( )0 0F H≥ . Accordingly, if ( ) ( )( ), 0,= + +o j jF qTφ λ α β is satisfied, the intersection 
point can only be found in the range [ ]0,φ . 

APPENDIX E 
Proof: 

( )

, , ,

1,

0

, ,

,

0

0, 2 2( ,0) ( ,1)
0 , , ,

,
( ,0)

, ,
1, 2

0

log 1 log 1

( ) 1 ( , ) log 1 log 12

τ β β

τ τ ε

  −  = + + +∑     + + ∈Κ    
   −   ≥ − + − + ∑ ∑    ∈ ∈    

pp i p i pp i

j

p i sp i

d j j

is
j j s s

sp i i j i jj sp i
s

pp i i j
j

j j

g P g PTR
T N g P N g Pi

g P g PT P H p
T N Ni K i K

( )

, ,

,

0 0

, , ,

1, 2 1, , 2

0 0

1,

( ,1)
, ,

1,

( ,0)
,

( ) ( , ) log 1 log 12 2

( ) log 1 ( ) 1 ( , ) log 1

(

τ ε

τ τ ε






      + + − + ∑ ∑     ∈ ∈    
  −  = + − − + ∑    ∈Κ    

−

pp i sp i

d j j

pp i p i sp i

j j d j j

s
p i i j

j

j j
s

i j

j

g P g P
P H p
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pp i p i

j

j

s
i jg P

p
N

g PT P H
T Ni K

 

( ) , ,

1, , 1, ,

0 0

,

0

( ,0) ( ,1)
, ,( ) 1 ( , ) ( ) ( , )

ln 2 ln 2

.
ln 2

τ ε τ ε

− − −∑ ∑ 
∈ ∈ 

Κ
≥ − Γ

sp i sp i

j d j j j d j j

j j

j

i j

s s
i j i j

p
j

g P g P
P H p P H p

N Ni K i K

R
N

 

References 

[1] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radios: making software radio more personal,” 
IEEE Personal Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999. Article (CrossRef Link)  

 

https://doi.org/10.1109/98.788210


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019           2891 

[2] Li Xu, He Fang, Zhiwei Lin, “Evolutionarily stable opportunistic spectrum access in cognitive 
radio networks,” IET Communications, vol. 10, no. 17, pp.2290-2299, Nov. 2016.  
Article (CrossRef Link) 

[3] Lokman Sboui, Hakim Ghazzai, Zouheir Rezki, “Achievable Rate of Spectrum Sharing 
Cognitive Radio Multiple-Antenna Channels,” IEEE Transactions on Wireless Communications, 
vol. 14, no. 9, pp.4847-4856, Sep. 2015. Article (CrossRef Link) 

[4] Shuying Zhang, Xiaohui Zhao, “Power allocation for sensing-based spectrum sharing cognitive 
radio system with primary quantized side information,” China Communications, vol. 13, no. 9, 
pp. 33-43, Sep. 2016. Article (CrossRef Link) 

[5] Van-Dinh Nguyen, Oh-Soon Shin, “Cooperative Prediction-and-Sensing-Based Spectrum 
Sharing in Cognitive Radio Networks,”IEEE Transactions on Cognitive Communications and 
Networking, vol. 4, no. 1, pp. 108-120, March. 2018. Article (CrossRef Link) 

[6] X. Kang, Y-C. Liang, A. Nallanathan, H. K. Garg, R. Zhang, “Optimal power allocation for 
fading channels in cognitive radio networks: ergodic capacity and outage capacity,” IEEE 
Transactions on Wireless Communications, vol. 8, no. 2, pp. 940-950, Feb. 2009.  
Article (CrossRef Link) 

[7] Wenjie Zhang, Yingjuan Sun, Lei Deng, Chai Kiat Yeo, and Liwei Yang, “Dynamic Spectrum 
Allocation for Heterogeneous Cognitive Radio Networks With Multiple Channels,” IEEE System 
Journal, vol. 9, no.6, pp. 1-12, April 2018. Article (CrossRef Link) 

[8] A.Zaeemzadeh, M. Joneidi, N. Rahnavard, GJun Qi, “Co-SpOT: Cooperative Spectrum 
Opportunity Detection using Bayesian Clustering in Spectrum-Heterogeneous Cognitive Radio 
Networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 2, pp. 
206-219, June 2018. Article (CrossRef Link) 

[9] Zengmao Chen, Yunmin Tang, Zhiguo Sun, “An interference model for heterogeneous cognitive 
radio networks,” 2017 IEEE/CIC International Conference on Communications in China (ICCC), 
Jan. 2017. Article (CrossRef Link) 

[10] M. Munochiveyi, Xiaohui Zhao, J. Mudare, “Wigner-Ville Distribution MVDR Beamforming 
Scheme for Interference-Tolerant Cognitive Radio Network,” 2017 IEEE/CIC International 
Conference on Communications in China (ICCC), Jan. 2017. Article (CrossRef Link) 

[11] Woping Xu, Runhe Qiu, Julian Cheng, “Fair Optimal Resource Allocation in Cognitive Radio 
Networks With Co-Channel Interference Mitigation,” IEEE Access, vol. 2, no. 1, pp. 37418 - 
37429, Feb. 2018. Article (CrossRef Link) 

[12] M.Jo, T. Maksymyuk, L. Batista, F.Maciel, F.de Almeida, M.Klymash, “A Survey of 
Converging Solutions for Heterogeneous Mobile Networks,” IEEE Wireless Communications, 
Vol.21, No.8, pp.54-62, Dec. 2014. Article (CrossRef Link) 

[13] X. Kang, Y.-C. Liang, H. K. Garg, R. Zhang, “optimal power allocation for OFDM-based 
cognitive radio with new primary transmission protect criteria,” IEEE Transactions on Wireless 
Communications, vol. 9, no.6, pp. 1536-1276, June. 2010. Article (CrossRef Link) 

[14] D. Li, J. Cheng, V. Leung, “Adaptive Spectrum Sharing for Half-duplex and Full-duplex 
Cognitive Radios: From the Energy Efficiency Perspective,” IEEE Transactions on 
Communications, vol. 9, no.6, pp. 1-12, June. 2018. Article (CrossRef Link) 

[15] X. Zhai, K. Chen, X. Liu, “Energy Efficiency of Access Control with Rate Constraints in 
Cognitive Radio Networks,” IEEE Access, vol. 6, pp.36354 – 36363, Sep. 2018.  
Article (CrossRef Link) 

[16] X. Liu, K. Zheng, L. Fu, X. Liu, X. Wang, G. Dai, “Energy Efficiency of Secure Cognitive Radio 
Networks with Cooperative Spectrum Sharing,” IEEE Transactions on Mobile Computing, vol. 6, 
pp.1536 –1233, May, 2018. Article (CrossRef Link) 

[17] M. Zhou, H. Yin, H. Wang, “Robust Energy Efficiency Power Allocation Algorithm for 
Cognitive Radio Networks with Rate Constraints,” in Proc. of 2017 17th IEEE International 
Conference on Communication Technology, pp.849 –854, 2017. Article (CrossRef Link) 

[18] Xu yongjun, Hu yuan, Li guoquan, Zhang haibo. “Robust resource allocation for heterogeneous 
wireless networks: a worst-case optimization,” IETCommunications, vol.12, no. 9, pp. 1064-1071, 
June 2018. Article (CrossRef Link) 

                                        

https://doi.org/10.1049/iet-com.2016.0049
https://doi.org/10.1109/TWC.2015.2427281
https://doi.org/10.1109/CC.2016.7582294
https://ieeexplore.ieee.org/document/8116681
https://doi.org/10.1109/TWC.2009.071448
https://doi.org/10.1109/JSYST.2018.2822309
https://doi.org/10.1109/TCCN.2017.2787710
https://doi.org/10.1109/ICCChina.2017.8330325
https://doi.org/10.1109/ICCChina.2017.8330486
https://doi.org/10.1109/ACCESS.2018.2845460
https://ieeexplore.ieee.org/document/7000972
https://ieeexplore.ieee.org/document/5475350
https://ieeexplore.ieee.org/document/8371613
https://doi.org/10.1109/ACCESS.2018.2841960
https://ieeexplore.ieee.org/document/8362946
https://doi.org/10.1109/ICCT.2017.8359755
https://doi.org/10.1049/iet-com.2017.0626


2892                       Bing Ning et al.: Energy Efficiency Optimization for multiuser OFDM-based Cognitive 
Heterogeneous networks 

[19] S.Stotas, A.Nallanathan, “Optimal sensing time and power allocation in multiband cognitive 
radio network,” IEEE Transactions on Communications, vol. 59, no.1, pp.226 – 235, Jan. 2018. 
Article (CrossRef Link) 

 
 
 

Bing Ning received the Ph.D. degree in information and communication system from 
Zhengzhou University, Zhengzhou, China, in 2016 and the B.E. degree in Electronic 
Information Engineering from the Nanjing Artillery Academy of PLA, Nanjing, China, 
in 2009. She is currently working in Zhongyuan university of Technology as a lecturer. 
From October 2012 to January 2013, she was a visiting researcher with the Department 
of Electrical Engineering and Computer Science, University of Kansas, Lawrence, 
USA. Her research interests are in the areas of wireless communications, including 
cognitive radio, Non-Orthogonal Multiple Access, and Multiple-input multiple-output. 
 

 
Aihua Zhang received the B.S. and Ph.D. degrees from Zhengzhou University of china in 
1998 and 2014，respectively. She received the master degree from China University of 
Mining \& Technology-Beijing in 2003. From 2003 to 2014, she was a Lecturer. Since 2014, 
she has been an Associate Professor with Zhongyuan University of Technology. Her current 
interests are in the areas of signal processing in communication system, wireless 
communications. 
 
 
 
Wanming Hao received the Master degree from Zhengzhou University, China in 2015. 
Now, He is currently serving as a Ph.D.Student at Kyushu University, Japan. His research 
interests include broadband wireless communication, cognitive radio, cooperative 
communication, Massive MIMO. 
 
 
 
 

 
Jianjun Li received the B.S. and the M.S. degree from Xidian University, Xi'an, China, 
and the Ph.D. degree in electronic engineering from Tsinghua University, Beijing, China in 
1996, 1999 and 2002, respectively. From 2002~2007, he was a senior researcher on 4G 
wireless communication in Beijing Samsung Telecom. R\&D Center in Beijing China. From 
2007~2015, he has worked in Posdata, Pantech and Innovative technology Lab. Co. as a 
senior researcher in Korea. During these period, his research mainly focus on Wimax and 
3GPP LTE standard including MIMO, CoMP, small cell and LAA. Since 2016, he has been 
a Professor at Zhongyuan University of Technology. His current research interest is on 5G 
wireless communication including massive MIMO, NOMA, new waveform and application 
of digital signal processing in communication systems. 

 
Shouyi Yang received his Ph.D degree from Beijing Institute of Technology, China in 
2002. He is currently a Full Professor with the School of Information Engineering, 
Zhengzhou University, China. He has published various paper in the field of signal 
processing and wireless communication. His research interests include signal processing in 
communications system, wireless communications and cognitive radio. 
 
 
 

https://doi.org/10.1109/TCOMM.2010.110310.090473

