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ABSTRACT

Along with the recent advances in quantum computers, it is anticipated that cryptographic attacks using them will make it insecure 

to use existing public key algorithms such as RSA and ECC. Currently, a lot of researches are underway to replace them by devising 

PQC (Post Quantum Cryptography) schemes. In this paper, we propose a performance enhancement method for Lizard 

implementation which is one of NIST PQC standardization submission. The proposed method is able to improve the performance by 

7 ~ 25% for its algorithms compared to the implementation in the submission through the techniques of various implementation aspects. 

This study hopes that Lizard will become more competitive as a candidate for PQC standardization.

☞ keyword :  Efficient implementation, Lizard, Post-quantum Cryptography, Cryptography, Security

1. Introduction

Post quantum cryptography refers to the cryptographic 

algorithms to maintain the security against attacks based on 

quantum computers. In 2017, NIST recruited candidates for 

standardization of the post quantum cryptography method and 

69 candidates were proposed. In 2022, the selection of 

standard methods will be completed [1]. In this study, we aim 

to improve the implementation performance of the proposed 

Lizard [2] method among these candidates. The Lizardmethod 

is based on the Learning With Errors (LWE) problem [3] and 

the Learning With Rounding (LWR) problem [4]. We can 

implement many security services using Lizard, but we try to 

improve the implementation of the simplest service, KEM 

(Key Encapsulation Mechanism). KEM means a method by 

which two participating communicators can securely generate 

a shared key of a can for secure communication. Normally, 
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if A and B use KEM to generate a shared key, then A sends 

its public key and public parameters to B, andB generates and 

passes the ciphertext c passed to A using KEM's Key 

Encapsulation algorithm do. B also obtains K, the key 

information to be shared at the same time. Finally, A uses 

the key decapsulation algorithm to obtain the shared key K 

using c and its own private key.

We have improved the performance of these KEM 

implementations. Specifically, we reduced the number of calls 

to the random number generation function used in key 

generation. This can be achieved by efficiently using the 

generated random number bits. Key Encapsulation algorithm 

and Decapsulation algorithm also improve the execution speed 

of iterative operations by using registers, and also improve the 

implementation of pointer operation using multiplication only 

by addition. As a result of this improvement, we achieved 

about 25% of key generation, 7% of key encapsulation, and 

10% of key decapsulation, compared to the KEM version 

originally submitted to NIST.

The rest of this paper is organized as follows. Section 2 

deals with prior knowledge, and Section 3 deals with related 

research. In Section 4, we propose an improvement method. 

In Section 5, we perform performance evaluation. Conclusions 

are made in Section 6.
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Notation Description

m
the number of LWE samples, a positive integer, a 

power of two

n the dimension of LWE samples, a positive integer

ℓ
a positive integer, the number of secret vectors in 

case of Lizard primitive, i.e. the number of plaintext 

slots in case of Lizard primitive

ℓ1
a positive integer, the number of secret vectors in 

case of IND-CPA KEM schemes

ℓ2
a positive integer, the number of ephemeral secret 

vectors in IND-CPA KEM schemes

d

a positive integer, the number of plaintext slots in 

case of IND-CPA PKE, the bit-length of shared 

secret key in case of IND-CPA KEM

p
the small modulus for rounding, a positive integer, a 

power of two

q the large modulus, a positive integer, a power of two

hr the Hamming weight of an ephemeral secret vector r

α

Lizard only considers the discrete Gaussian 

 as an error distribution where is the 

error rate in (0, 1), so  will substitute the 

distribution .

G, H, H′ three hash functions to achieve the IND-CCA2 

security

Zq a set {0, 1, ..., q − 1}

Zp a set {0, 1, ..., p − 1}

HWTm(h)
the uniform distribution over the subset of {−1, 0, 

1}m whose elements contain m − h number of zeros

Bm,h

the subset of {−1, 0, 1}m of which elements have 

exactly h number of non-zero components, i.e. the set 

of all possible vectors chosen from

R the ring Z[X]/(Xn+ 1)

A
t

the transpose of the matrix A

ZOn(ρ)

the distribution over {−, 0, 1}n where each 

component x satisfies Pr[x= 1] =Pr[x= −] = ρ/2 and 

Pr[x= 0] = 1 – ρ

Notation Description

(ρ) 1/2

DGσ
the discrete Gaussian distribution with the parameter 

σ⌊ ⌉ rounding function, ⌊ ⌉ is the nearest integer to the 

rational number x, rounding upwards in case of a tie

∥ concatenation operator

∥·∥ norm operator

LWE_N
refers to the notation n, in which the number of LWE 

samples, positive integer and power of two are set

LWE_M

refers to the notation m, in which the number of 

LWE samples, positive integer and power of two are 

set

LWE_L

refers to the notation ℓ, in which positive integer and 

the number of plaintext slots in case of Lizard 

primitive are set

LWE_L1

refers to the notation ℓ1, in which positive integer 

and the number of secret vectors in case of 

IND-CCA2 KEM schemes are set

LWE_L2

refers to the notation ℓ2, in which positive integer 

and the number of ephemeral secret vectors in 

IND-CCA2 KEM schemes are set

Notation Value

LWE_N (n) 536

LWE_M(m) 1024

LWE_L(ℓ) 256

LWE_L1 (ℓ1) 16

LWE_L2 (ℓ2) 16

HR 140

2. Preliminaries

2.1.  Notation

Here is the list of notations which will be used throughout 

this paper:

(Table 1)  Notations

The Lizard implementation in this paper uses the 

parameter KEM_CATEGORY1_N536 [1], which provides 

the same level of security as that provided by 128bit AES. 

In this case, the values of some of the symbols defined 

above are defined as shown in Table 2.    

(Table 2) KEM_CATEGORY1_N536 parameter setup

2.2 Introduction to Lizard KEM

Recently, Hofheinz et al. proposed a method of converting 

a public key cryptographic algorithm of arbitrary IND-CPA 
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Lizard.Encap

Input
The set of public parameters params, public key 

pk = (A||B)∈Zq
m×n×Zq

m×ℓ1.

Output
The ciphertext C = (C1, C2, d) ∈ Zp

n×ℓ2
× Zp

ℓ1×ℓ2
 

× {0, 1}
ℓ
 and the shared key K ∈ {0, 1}

d
.

Operation

Step 1 Generate a random matrix M ∈ {0,1}
ℓ1×ℓ2

. 

Step 2

Compute the matrix R:= H(M), create vector ridx 

containing indices of non-zero components of R, 

and the vector H′(M). The logic behind this is in 

the description [8].

Step 3 Extract matrices A and B from the public key.

Step 4

Compute C1:=⌊ p/q) · AtR⌉ ∈ Zp
n×ℓ2 and C2:=⌊ p/q) 

· ((q/2) · M + B
t
R)⌉ ∈Zp

ℓ1×ℓ2
. C1 and C2 are the 

first and second vectors.

Lizard.Encap

Step 5

Compute K: = G (C1, C2, d, M), and output the 

pair (C = (C1, C2, d), K). M is the source text. 

K is the encapsulated text. Calculate shared secret 

which is a specific hash function of the plain and 

encrypted text. 

Lizard.Decap

Input:

The set of public parameters params, the public 

key pk = (A∥B) ∈ Zq
m×n × Zq

m×ℓ1, the secret 

key sk = (S, T) ∈{−1, 0, 1}
n×ℓ1

 × {0, 1}
ℓ1×ℓ2

, 

and the ciphertext C = (C1, C2, d) ∈ Zp
n×ℓ2 
× 

Zp
ℓ1×ℓ2× {0, 1}ℓ.

Output: The shared key K ∈ {0, 1}
d
.

Operation

Step 1

Parse the ciphertext C: = (C1, C2, d). C1 and C2 

are the first and second vectors in the encrypted 

text.

Step 2 Compute M′ := ⌊ 2/p) · (C2+StC1)⌉ ∈ Z2
ℓ1×ℓ2.

Step 3
Compute R′ := H (M′), ridx from M‘and d′:= 

H′(M′).

Step 4

Compute C1′:= ⌊ p/q) · AtR′⌉ ∈ Zp
n×ℓ2 and C2′:= ⌊ p/q) · ((q/2) · M′+ B

t
R′)⌉ ∈ Zp

ℓ1×ℓ2
, and set C′:= 

(C1′, C2′, d′).
Step 5 If C ≠′, then output K:= G (C1, C2, d, T).

Step 6

Else, output the shared key K:= G (C1, C2, d, 

M′). Calculate the shared secret of the 

decapsulated text and compare it to the one 

passed along with the encrypted text.

security, to a KEM that provides IND-CCA2 security by 

using FO (Fusisaki-Okamoto) transformation [5]. The Lizard 

KEM is a result of modifying the Lizard cipher algorithm 

according to the above method, and can be described as 

Tables 3 to 5 below.

Lizard is composed of the key generation algorithm 

(Lizard.KeyGen), the key encapsulation algorithm (Lizard.Encap) 

and the key decapsulation algorithm (Lizard.Decap). the 

parameters used for Lizard.KeyGen (params) are  m, n, l1, 

l2, l, d, p, q, (2|p|q), hr (<m), l=l1∙l2, and also include 0 

< ρ, α <1, and the hash functions G:{0,1}*→,1}d, H:{0,1}*

→l2m,h, and H’:{0,1}*→,1}l. The following Table 3~5 

describe the details of the algorithms.

(Table 3) Lizard.KeyGen

Lizard.Keygen

Input The set of parameters params

Output

A key pair containing the private key (S, T ) ∈ 

{−, 0, 1}
n×ℓ1
×{0, 1}

ℓ1×ℓ2
 and the public key 

(A||B)∈Zq 
m×(n+ℓ1).

Operation

Step 1 Generate a random matrix A←Zq 
m×n

.

Step 2
Set a secret matrix S: = (s0||..||sℓ1−) by sampling 

each si independently from the distribution ZOn(1/2).

Step 3 Generate a random matrix T ← {0, 1}
ℓ1×ℓ2

.

Step 4
Generate error matrix E. Sample an integer E ← 

DGαq, and then set E = (E) ∈ Zq
m×ℓ1

.

Step 5

Calculate B: = −S + E ∈ Zqm×ℓ1. It is the 

second part of the public key. (A,B) is the public 

key, (S,T) is the secret (private) key.

(Table 4) Lizard.Encap

(Table 5) Lizard.Decap

The algorithms described in Tables 3-5 take a lot of time 

unless carefully implemented [1].  We aim to implement the 

Lizard submitted to NIST as an implementation to be 

improved [1].

3. Related Work

This paper is an improvement of Lizard proposed to 

NIST. In this paper, we introduce the competitive PQC 

algorithms proposed to NIST, and finally introduce Lizard.

Bos et al. proposed a KEM (Frodo) that is based LWE 

problem [6]. They showed that they could implement their 

methods in OpenSSL to share keys between the participants 

in networks. They argued that they could use their methods 

to provide quantum security so they could replace ECDHE. 

This method is a KEM competing with Lizard. The problem 

with this method is that it takes a lot of randomness to 
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generate matrix A and consumes 40% of the time to generate 

A [6]. They have attempted to use their methods in a variety 

of environments through further improvements in the pattern 

of memory accesses.

Cheon et al. proposed a public key cryptographic 

algorithm based on spLWE (LWE with sparse secret), which 

is a variant of the LWE problem [7]. They implemented it 

based onPeikert's IND-CPA-based public key cryptosystem 

[8] with FO transform [9]. This method has a disadvantage 

in that a higher-order parameter is required to be used in 

comparison with the LWE-based method. This method 

requires about 313 microseconds in the Macbook Pro with 

2.6 GHz Intel Core i5 CPU environment to share the 

message of 256 bits length.

Alkim et al. proposed a method to improve efficiency and 

safety compared to [6] by improving the method proposed by 

Peikert et al. [8] [10]. In their method, the large modulus q 

value could be reduced to q = 12289 < 214 compared to the 

previous method [6] where q=232. It can also provide 

128-bit post quantum safety.

Bernstein et al. [10] mentioned the possibility of side 

channel attack and proposed a method based on streamlined 

NTRU prime [11]. The proposed method is improved in 

performance compared to the previous method, and it is 

known that it has a small attack surface because it uses a 

ring with no structure.

[12] is a well-known KEM based on the module LWE 

problem- and is known to exhibit very efficient performance. 

They are known to show very good performance in terms of 

the required ciphertext size and computation efficiency by 

applying a compression method for small numbers. In [13], 

unlike the previous method, it is proposed a cost-free method 

to achieve QROM security without additional hash.

Finally, Lizard is a method based on LWE and Learning 

with Rounding (LWR) [2]. This method is very efficient 

because it does not perform Gaussian Sampling in 

encryption. Lizard also ensures quantum security under the 

QROM model.

4. Proposed approach

In this section, we discuss various performance enhancement 

methods proposed in this study. The target implementation to 

enhance in this paper is the reference implementation of the 

Lizard submitted to the NIST PQC Standardization Content 

[1].

4.1 Improvement of key generation 

algorithm

We first reduced the number of random bits needed to 

generate matrix A. In the existing implementation, random 

bits are generated in byte units. Since the length of each 

element in matrix A is 11 bits, 5 bits are discarded when 

2-byte random numbers are used to generate an element in 

A. This is done with a larger number of random number 

generator function calls, which requires a large performance 

waste. We used these 5 bits to reduce the number of random 

number generation. 

According to the original implementation submitted by 

NIST [1], 1097728 random bits are required to generate a 

matrix A in 128bit quantum security setting. However, as a 

result of the improvement, only 823296 bits are required in 

the proposed implementation. 

The second improvement is areduction in the number of 

random bits required to generate the secret key sparse vector 

S. In implementations submitted to the existing standard, a 

one-byte random number was used to generate S's elements, 

represented by one of 1,0, -1. We improved this to only use 

2 bits, and as a result we could reduce the length of the 

required random bits to 1/4. As a result of the improvement, 

unlike the original implementation where 8576 random bits 

are required in the original implementation, the proposed 

implememtation requries only 2144 random bits to generate 

a secret key matrix S.

The third improvement is the reduction of the number of 

random bits needed to generate matrix E. The elements of 

this matrix are extracted from the Discrete Gaussian 

distribution, which requires random bits. Unfortunately, in 

the existing implementation, 32bit random number was 

generated and used even though total 10bit random number 

bit is needed. We have improved it so that only 10bit 

random number can be used exactly. Fig. 1) explains the 

improvement. As a result of this improvement the number of 

random bits generated for the matrix E is reduced from 

65536bits to 32768bits.
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(Fig. 1) Improvement to generate the matrix E: only 

one random word is generated and extracts 

10bits from the word.

(Fig. 2) The initial implementation in the step of 

generation of r_idx in Key Encapsulation.

4.2 Improvement of key encapsulation and 

decapsulation algorithms

We propose an efficient method to generate r_idx by 

repeating the operation of extracting {-1,0,1} from the 

existing implementation. The concrete contents are shown in 

figures 2 and 3.

 In the existing implementation, the multiplication 

operation is required when calculating two pointers r_t and 

r_idxtin the process of creating r_idx as shown in Fig. We 

have replaced the multiplication operations required for r_t 

by addition operations during these operations. If this process 

exists simultaneously in the encapsulation and decapsulation 

implementations, we modify it and improve the performance.

(Fig. 3) Step of improved generation of r_idx in Key 

Encapsulation.

5. Performance evaluation

We performed 100,000 iterations for each improved 

algorithm implementation and measured the performance 

with the meanvalue. Performance evaluation was performed 

with parameters of 128 bit Quantum safety. The execution 

environment is Intel Core i5-4557 CPU 3.20GHz, 4GB 

RAM, and Ubuntu 14.04 LTS. As a result, we found that 

key generation is improved by 25%, Key Encapsulation and 

Decapsulaton by 7% and 10%, respectively, compared with 

the existing implementation.

Figures 3 and 4 below show the execution time of each 

algorithm including the degree of change of execution time. 

As shown in the figure, the key generation time does not 

change at every execution, but the Key Encapsulation / 

Decapsulation method can confirm that there is a difference 

in execution time according to the generated random number 

value. The difference of the execution times vary in each 

iteration, around 0.4~0.55 ms. In order to improve the 

security of the Lizard, it is necessary to reduce this value to 

make the scheme resilient against side-channel attacks.
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6. Conclusion

In this paper, we analyze the implementation of Lizard 

proposed in NIST PQC and proposeda method to improve 

performance. By simply reducing the number of wasted 

random bits and improving the register operation, we have 

achieved a performance improvement of 7% ~ 25%. We 

hope that the results of this paper will be applied to Lizard 

implementations so that Lizard can be adopted as an 

international standard algorithm. Also, as a future study, we 

will try to improve the performance of Ring Lizard based on 

Ring LWE problem unlike Lizard. This study is also 

expected to be applied as a key method in various security 

fields [14-16].

(Fig. 4) Comparison of Key generation time with its 

time

(Fig. 5) Comparison on Key Encapsulation/ Key 

Decapsulation times with its time variation
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