
Journal of Internet Computing and Services(JICS) 2019. Jun.: 20(3): 25-31 25

Improving the speed of the Lizard
implementation

Shakhriddin Rustamov1
Younho Lee2*

ABSTRACT

Along with the recent advances in quantum computers, it is anticipated that cryptographic attacks using them will make it insecure

to use existing public key algorithms such as RSA and ECC. Currently, a lot of researches are underway to replace them by devising

PQC (Post Quantum Cryptography) schemes. In this paper, we propose a performance enhancement method for Lizard

implementation which is one of NIST PQC standardization submission. The proposed method is able to improve the performance by

7 ~ 25% for its algorithms compared to the implementation in the submission through the techniques of various implementation aspects.

This study hopes that Lizard will become more competitive as a candidate for PQC standardization.

☞ keyword : Efficient implementation, Lizard, Post-quantum Cryptography, Cryptography, Security

1. Introduction

Post quantum cryptography refers to the cryptographic

algorithms to maintain the security against attacks based on

quantum computers. In 2017, NIST recruited candidates for

standardization of the post quantum cryptography method and

69 candidates were proposed. In 2022, the selection of

standard methods will be completed [1]. In this study, we aim

to improve the implementation performance of the proposed

Lizard [2] method among these candidates. The Lizardmethod

is based on the Learning With Errors (LWE) problem [3] and

the Learning With Rounding (LWR) problem [4]. We can

implement many security services using Lizard, but we try to

improve the implementation of the simplest service, KEM

(Key Encapsulation Mechanism). KEM means a method by

which two participating communicators can securely generate

a shared key of a can for secure communication. Normally,

1 Division of Industrial and Information Systems Engineering, The
Graduate School of Public Policy and Information Technology,
Seoul National University of Science and Technology, Seoul,
01811, Korea

2 ITM Division, Seoul National University of Science and
Technology, Seoul, 01811, Korea

* Corresponding author: younholee@seoultech.ac.kr
[Received 30 December 2018, Reviewed 23 January 2019(R2 5
March 2019), Accepted 27 May 2019]
☆ This study was supported by the Research Program funded

by the Seoul National University of Science and Technology.
☆ A preliminary version of this paper was presented at APIC-IST

2018 and was selected as an outstanding paper.

if A and B use KEM to generate a shared key, then A sends

its public key and public parameters to B, andB generates and

passes the ciphertext c passed to A using KEM's Key

Encapsulation algorithm do. B also obtains K, the key

information to be shared at the same time. Finally, A uses

the key decapsulation algorithm to obtain the shared key K

using c and its own private key.

We have improved the performance of these KEM

implementations. Specifically, we reduced the number of calls

to the random number generation function used in key

generation. This can be achieved by efficiently using the

generated random number bits. Key Encapsulation algorithm

and Decapsulation algorithm also improve the execution speed

of iterative operations by using registers, and also improve the

implementation of pointer operation using multiplication only

by addition. As a result of this improvement, we achieved

about 25% of key generation, 7% of key encapsulation, and

10% of key decapsulation, compared to the KEM version

originally submitted to NIST.

The rest of this paper is organized as follows. Section 2

deals with prior knowledge, and Section 3 deals with related

research. In Section 4, we propose an improvement method.

In Section 5, we perform performance evaluation. Conclusions

are made in Section 6.

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2019 KSII

http://dx.doi.org/10.7472/jksii.2019.20.3.25

Improving the speed of the Lizard implementation

26 2019. 6

Notation Description

m
the number of LWE samples, a positive integer, a

power of two

n the dimension of LWE samples, a positive integer

ℓ
a positive integer, the number of secret vectors in

case of Lizard primitive, i.e. the number of plaintext

slots in case of Lizard primitive

ℓ1
a positive integer, the number of secret vectors in

case of IND-CPA KEM schemes

ℓ2
a positive integer, the number of ephemeral secret

vectors in IND-CPA KEM schemes

d

a positive integer, the number of plaintext slots in

case of IND-CPA PKE, the bit-length of shared

secret key in case of IND-CPA KEM

p
the small modulus for rounding, a positive integer, a

power of two

q the large modulus, a positive integer, a power of two

hr the Hamming weight of an ephemeral secret vector r

α

Lizard only considers the discrete Gaussian

 as an error distribution where is the

error rate in (0, 1), so  will substitute the

distribution .

G, H, H′ three hash functions to achieve the IND-CCA2

security

Zq a set {0, 1, ..., q − 1}

Zp a set {0, 1, ..., p − 1}

HWTm(h)
the uniform distribution over the subset of {−1, 0,

1}m whose elements contain m − h number of zeros

Bm,h

the subset of {−1, 0, 1}m of which elements have

exactly h number of non-zero components, i.e. the set

of all possible vectors chosen from

R the ring Z[X]/(Xn+ 1)

A
t

the transpose of the matrix A

ZOn(ρ)

the distribution over {−, 0, 1}n where each

component x satisfies Pr[x= 1] =Pr[x= −] = ρ/2 and

Pr[x= 0] = 1 – ρ

Notation Description

(ρ) 1/2

DGσ
the discrete Gaussian distribution with the parameter

σ⌊ ⌉ rounding function, ⌊ ⌉ is the nearest integer to the

rational number x, rounding upwards in case of a tie

∥ concatenation operator

∥·∥ norm operator

LWE_N
refers to the notation n, in which the number of LWE

samples, positive integer and power of two are set

LWE_M

refers to the notation m, in which the number of

LWE samples, positive integer and power of two are

set

LWE_L

refers to the notation ℓ, in which positive integer and

the number of plaintext slots in case of Lizard

primitive are set

LWE_L1

refers to the notation ℓ1, in which positive integer

and the number of secret vectors in case of

IND-CCA2 KEM schemes are set

LWE_L2

refers to the notation ℓ2, in which positive integer

and the number of ephemeral secret vectors in

IND-CCA2 KEM schemes are set

Notation Value

LWE_N (n) 536

LWE_M(m) 1024

LWE_L(ℓ) 256

LWE_L1 (ℓ1) 16

LWE_L2 (ℓ2) 16

HR 140

2. Preliminaries

2.1. Notation

Here is the list of notations which will be used throughout

this paper:

(Table 1) Notations

The Lizard implementation in this paper uses the

parameter KEM_CATEGORY1_N536 [1], which provides

the same level of security as that provided by 128bit AES.

In this case, the values of some of the symbols defined

above are defined as shown in Table 2.

(Table 2) KEM_CATEGORY1_N536 parameter setup

2.2 Introduction to Lizard KEM

Recently, Hofheinz et al. proposed a method of converting

a public key cryptographic algorithm of arbitrary IND-CPA

Improving the speed of the Lizard implementation

한국 인터넷 정보학회 (20권3호) 27

Lizard.Encap

Input
The set of public parameters params, public key

pk = (A||B)∈Zq
m×n×Zq

m×ℓ1.

Output
The ciphertext C = (C1, C2, d) ∈ Zp

n×ℓ2
× Zp

ℓ1×ℓ2

× {0, 1}
ℓ
 and the shared key K ∈ {0, 1}

d
.

Operation

Step 1 Generate a random matrix M ∈ {0,1}
ℓ1×ℓ2

.

Step 2

Compute the matrix R:= H(M), create vector ridx

containing indices of non-zero components of R,

and the vector H′(M). The logic behind this is in

the description [8].

Step 3 Extract matrices A and B from the public key.

Step 4

Compute C1:=⌊ p/q) · AtR⌉ ∈ Zp
n×ℓ2 and C2:=⌊ p/q)

· ((q/2) · M + B
t
R)⌉ ∈Zp

ℓ1×ℓ2
. C1 and C2 are the

first and second vectors.

Lizard.Encap

Step 5

Compute K: = G (C1, C2, d, M), and output the

pair (C = (C1, C2, d), K). M is the source text.

K is the encapsulated text. Calculate shared secret

which is a specific hash function of the plain and

encrypted text.

Lizard.Decap

Input:

The set of public parameters params, the public

key pk = (A∥B) ∈ Zq
m×n × Zq

m×ℓ1, the secret

key sk = (S, T) ∈{−1, 0, 1}
n×ℓ1

 × {0, 1}
ℓ1×ℓ2

,

and the ciphertext C = (C1, C2, d) ∈ Zp
n×ℓ2
×

Zp
ℓ1×ℓ2× {0, 1}ℓ.

Output: The shared key K ∈ {0, 1}
d
.

Operation

Step 1

Parse the ciphertext C: = (C1, C2, d). C1 and C2

are the first and second vectors in the encrypted

text.

Step 2 Compute M′ := ⌊ 2/p) · (C2+StC1)⌉ ∈ Z2
ℓ1×ℓ2.

Step 3
Compute R′ := H (M′), ridx from M‘and d′:=

H′(M′).

Step 4

Compute C1′:= ⌊ p/q) · AtR′⌉ ∈ Zp
n×ℓ2 and C2′:= ⌊ p/q) · ((q/2) · M′+ B

t
R′)⌉ ∈ Zp

ℓ1×ℓ2
, and set C′:=

(C1′, C2′, d′).
Step 5 If C ≠′, then output K:= G (C1, C2, d, T).

Step 6

Else, output the shared key K:= G (C1, C2, d,

M′). Calculate the shared secret of the

decapsulated text and compare it to the one

passed along with the encrypted text.

security, to a KEM that provides IND-CCA2 security by

using FO (Fusisaki-Okamoto) transformation [5]. The Lizard

KEM is a result of modifying the Lizard cipher algorithm

according to the above method, and can be described as

Tables 3 to 5 below.

Lizard is composed of the key generation algorithm

(Lizard.KeyGen), the key encapsulation algorithm (Lizard.Encap)

and the key decapsulation algorithm (Lizard.Decap). the

parameters used for Lizard.KeyGen (params) are m, n, l1,

l2, l, d, p, q, (2|p|q), hr (<m), l=l1∙l2, and also include 0

< ρ, α <1, and the hash functions G:{0,1}*→,1}d, H:{0,1}*

→l2m,h, and H’:{0,1}*→,1}l. The following Table 3~5

describe the details of the algorithms.

(Table 3) Lizard.KeyGen

Lizard.Keygen

Input The set of parameters params

Output

A key pair containing the private key (S, T) ∈

{−, 0, 1}
n×ℓ1
×{0, 1}

ℓ1×ℓ2
 and the public key

(A||B)∈Zq
m×(n+ℓ1).

Operation

Step 1 Generate a random matrix A←Zq
m×n

.

Step 2
Set a secret matrix S: = (s0||..||sℓ1−) by sampling

each si independently from the distribution ZOn(1/2).

Step 3 Generate a random matrix T ← {0, 1}
ℓ1×ℓ2

.

Step 4
Generate error matrix E. Sample an integer E ←

DGαq, and then set E = (E) ∈ Zq
m×ℓ1

.

Step 5

Calculate B: = −S + E ∈ Zqm×ℓ1. It is the

second part of the public key. (A,B) is the public

key, (S,T) is the secret (private) key.

(Table 4) Lizard.Encap

(Table 5) Lizard.Decap

The algorithms described in Tables 3-5 take a lot of time

unless carefully implemented [1]. We aim to implement the

Lizard submitted to NIST as an implementation to be

improved [1].

3. Related Work

This paper is an improvement of Lizard proposed to

NIST. In this paper, we introduce the competitive PQC

algorithms proposed to NIST, and finally introduce Lizard.

Bos et al. proposed a KEM (Frodo) that is based LWE

problem [6]. They showed that they could implement their

methods in OpenSSL to share keys between the participants

in networks. They argued that they could use their methods

to provide quantum security so they could replace ECDHE.

This method is a KEM competing with Lizard. The problem

with this method is that it takes a lot of randomness to

Improving the speed of the Lizard implementation

28 2019. 6

generate matrix A and consumes 40% of the time to generate

A [6]. They have attempted to use their methods in a variety

of environments through further improvements in the pattern

of memory accesses.

Cheon et al. proposed a public key cryptographic

algorithm based on spLWE (LWE with sparse secret), which

is a variant of the LWE problem [7]. They implemented it

based onPeikert's IND-CPA-based public key cryptosystem

[8] with FO transform [9]. This method has a disadvantage

in that a higher-order parameter is required to be used in

comparison with the LWE-based method. This method

requires about 313 microseconds in the Macbook Pro with

2.6 GHz Intel Core i5 CPU environment to share the

message of 256 bits length.

Alkim et al. proposed a method to improve efficiency and

safety compared to [6] by improving the method proposed by

Peikert et al. [8] [10]. In their method, the large modulus q

value could be reduced to q = 12289 < 214 compared to the

previous method [6] where q=232. It can also provide

128-bit post quantum safety.

Bernstein et al. [10] mentioned the possibility of side

channel attack and proposed a method based on streamlined

NTRU prime [11]. The proposed method is improved in

performance compared to the previous method, and it is

known that it has a small attack surface because it uses a

ring with no structure.

[12] is a well-known KEM based on the module LWE

problem- and is known to exhibit very efficient performance.

They are known to show very good performance in terms of

the required ciphertext size and computation efficiency by

applying a compression method for small numbers. In [13],

unlike the previous method, it is proposed a cost-free method

to achieve QROM security without additional hash.

Finally, Lizard is a method based on LWE and Learning

with Rounding (LWR) [2]. This method is very efficient

because it does not perform Gaussian Sampling in

encryption. Lizard also ensures quantum security under the

QROM model.

4. Proposed approach

In this section, we discuss various performance enhancement

methods proposed in this study. The target implementation to

enhance in this paper is the reference implementation of the

Lizard submitted to the NIST PQC Standardization Content

[1].

4.1 Improvement of key generation

algorithm

We first reduced the number of random bits needed to

generate matrix A. In the existing implementation, random

bits are generated in byte units. Since the length of each

element in matrix A is 11 bits, 5 bits are discarded when

2-byte random numbers are used to generate an element in

A. This is done with a larger number of random number

generator function calls, which requires a large performance

waste. We used these 5 bits to reduce the number of random

number generation.

According to the original implementation submitted by

NIST [1], 1097728 random bits are required to generate a

matrix A in 128bit quantum security setting. However, as a

result of the improvement, only 823296 bits are required in

the proposed implementation.

The second improvement is areduction in the number of

random bits required to generate the secret key sparse vector

S. In implementations submitted to the existing standard, a

one-byte random number was used to generate S's elements,

represented by one of 1,0, -1. We improved this to only use

2 bits, and as a result we could reduce the length of the

required random bits to 1/4. As a result of the improvement,

unlike the original implementation where 8576 random bits

are required in the original implementation, the proposed

implememtation requries only 2144 random bits to generate

a secret key matrix S.

The third improvement is the reduction of the number of

random bits needed to generate matrix E. The elements of

this matrix are extracted from the Discrete Gaussian

distribution, which requires random bits. Unfortunately, in

the existing implementation, 32bit random number was

generated and used even though total 10bit random number

bit is needed. We have improved it so that only 10bit

random number can be used exactly. Fig. 1) explains the

improvement. As a result of this improvement the number of

random bits generated for the matrix E is reduced from

65536bits to 32768bits.

Improving the speed of the Lizard implementation

한국 인터넷 정보학회 (20권3호) 29

(Fig. 1) Improvement to generate the matrix E: only

one random word is generated and extracts

10bits from the word.

(Fig. 2) The initial implementation in the step of

generation of r_idx in Key Encapsulation.

4.2 Improvement of key encapsulation and

decapsulation algorithms

We propose an efficient method to generate r_idx by

repeating the operation of extracting {-1,0,1} from the

existing implementation. The concrete contents are shown in

figures 2 and 3.

 In the existing implementation, the multiplication

operation is required when calculating two pointers r_t and

r_idxtin the process of creating r_idx as shown in Fig. We

have replaced the multiplication operations required for r_t

by addition operations during these operations. If this process

exists simultaneously in the encapsulation and decapsulation

implementations, we modify it and improve the performance.

(Fig. 3) Step of improved generation of r_idx in Key

Encapsulation.

5. Performance evaluation

We performed 100,000 iterations for each improved

algorithm implementation and measured the performance

with the meanvalue. Performance evaluation was performed

with parameters of 128 bit Quantum safety. The execution

environment is Intel Core i5-4557 CPU 3.20GHz, 4GB

RAM, and Ubuntu 14.04 LTS. As a result, we found that

key generation is improved by 25%, Key Encapsulation and

Decapsulaton by 7% and 10%, respectively, compared with

the existing implementation.

Figures 3 and 4 below show the execution time of each

algorithm including the degree of change of execution time.

As shown in the figure, the key generation time does not

change at every execution, but the Key Encapsulation /

Decapsulation method can confirm that there is a difference

in execution time according to the generated random number

value. The difference of the execution times vary in each

iteration, around 0.4~0.55 ms. In order to improve the

security of the Lizard, it is necessary to reduce this value to

make the scheme resilient against side-channel attacks.

Improving the speed of the Lizard implementation

30 2019. 6

6. Conclusion

In this paper, we analyze the implementation of Lizard

proposed in NIST PQC and proposeda method to improve

performance. By simply reducing the number of wasted

random bits and improving the register operation, we have

achieved a performance improvement of 7% ~ 25%. We

hope that the results of this paper will be applied to Lizard

implementations so that Lizard can be adopted as an

international standard algorithm. Also, as a future study, we

will try to improve the performance of Ring Lizard based on

Ring LWE problem unlike Lizard. This study is also

expected to be applied as a key method in various security

fields [14-16].

(Fig. 4) Comparison of Key generation time with its

time

(Fig. 5) Comparison on Key Encapsulation/ Key

Decapsulation times with its time variation

References

[1] NIST PQC Standardization. Available at:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[2] J. Cheon, D. Kim, J. Lee, and Y. Song, "Lizard: Cut

Off the Tail! A Practical Post-quantum Public-Key

Encryption from LWE and LWR", In Proc International

Conference on Security and Cryptography for Networks

(SCN) 2018, LNCS vol. 11035, pp. 160-177, 2018.

https://doi.org/10.1007/978-3-319-98113-0_9

[3] Oded Regev, "On lattices, learning with errors, random

linear codes, and cryptography", In Proceedings of the

Thirty-seventh Annual ACM Symposium on Theory of

Computing, STOC ’05, pages 84–93, New York, NY,

USA, 2005. ACM.

https://doi.org/10.1145/1568318.1568324

[4] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, Daniel

Wich, "Learning with Rounding, Revisited", In Proc.

CRYPTO, LNCS vol. 8042, pp. 57-74, 2013.

https://doi.org/10.1007/978-3-642-40041-4_4

[5] Hofheinz, D., Hövelmanns, K., & Kiltz, E, "A modular

analysis of the Fujisaki-Okamoto transformation,"In

Theory of Cryptography Conference (pp. 341-371) Nov,

2017. Springer.

https://doi.org/10.1007/978-3-319-70500-2_12

[6] Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig,

M., Nikolaenko, V., et al. "Frodo: Take off the Ring!:

Practical, Quantum-Secure Key Exchange from LWE",

In Proc. 23rd ACM Conference on Computer and

Communications Security.

https://doi.org/10.1145/2976749.2978425

[7] J Cheon et al, "A Practical Post-Quantum Public-Key

Cryptosystem Based on spLWE.", In Proc. International

Conference on Information Security and Cryptology

(ICISC 2016) – LNCS vol. 10157, pp. 51-74, 2016.

https://doi.org/10.1007/978-3-319-53177-9_3

[8] Peikert, C. "Lattice Cryptography for the Internet". In

Proc. Post-Quantum Cryptography, LNCS vol. 8772,

pp. 197-219. 2014.

https://doi.org/10.1007/978-3-319-11659-4_12

[9] Targhi, E., & Unruh, D, "Quantum Security of the

Fujisaki-Okamoto Transform", In Proc. Theory of

Improving the speed of the Lizard implementation

한국 인터넷 정보학회 (20권3호) 31

◐ 저 자 소 개 ◑

Shakhriddin Rustamov

Shakhridin Rustamov graduated TUIT at 2015. He obtained his M.S. degree from the Department of

Industrial and Information Systems, Graduate School of Seoul National University of Science and Technology

at 2018. Since 2018, he is working in Mongterang International Inc as an Application Specialist.

Younho Lee

YOUNHO LEE received the B.S., M.S., and Ph.D. degrees in computer science from KAIST, South Korea,

in 2000, 2002, and 2006, respectively. He was a Visiting Post-Doctoral Researcher and as a Member of

Research Staff with the Georgia Tech Information Security Center from 2007 to 2009. From 2009 to 2013,

he was an Assistant Professor with the Department of Information and Communication Engineering,

Yeungnam University, South Korea. He is currently an Associate Professor with the Department Industrial

and Systems Engineering, Seoul National University of Science and Technology, South Korea. His research

interests include network security, applied cryptography, and fintech security.

Cryptography:14th International Conference, 2016, pp.

192-216. Berlin: Springer.

https://doi.org/10.1007/978-3-662-53644-5_8

[10] Alkim, E., Ducas, L., Pöppelman, T., & Shwabe, P,

"Post-quantum Key Exchange – A New Hope," In,

Proc.25th USENIX Security Symposium USENIX

Security 16. Austin, TX: USENIX Association, 2016.

https://www.usenix.org/conference/usenixsecurity16/tech

nical-sessions/presentation/alkim

[11] Bernstein, D., Chuengsatiansup, C., Lange, T., & van

Vredendaal, C., "NTRU Prime: Reducing Attack

Surface at Low Cost", In Proc. Selected Areas in

Cryptography SAC 2017, pp. 235-260, 2017.

https://doi.org/10.1007/978-3-319-72565-9_12

[12] Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,

V., Schanck, J. M., and Stehlé, D. (2018, April).

CRYSTALS-Kyber: a CCA-secure module-lattice-based

KEM. In 3rd IEEE European Symposium on Security

and Privacy. London, United Kingdom.

https://doi.org/10.1109/eurosp.2018.00032

[13] Jiang, H., Zhang, Z., Chen, L., Wang, H., & Ma, Z.,

"Post-quantum IND-CCA-secure KEM without

additional hash", Cryptology ePrint Archive,

https://eprint.iacr.org/2017/1096 .

[14] Seul-Ki Choi, Chung-Huang Yang, Jin Kwak, " System

Hardening and Security Monitoring for IoT Devices to

Mitigate IoT Security Vulnerabilities and Threats", KSII

Transactions on Internet and Information Systems, vol.

12, no. 2, Feb., 2018.

https://doi.org/10.3837/tiis.2018.02.022

[15] Mrutyunjanya Sahani, Subhashree Subudhi, Mihir

Narayan Mohanty, "Design of Face Recognition based

Embedded Home Security System", KSII Transactions

on Internet and Information Systems, vol. 10, no. 4,

Apr., 2016. https://doi.org/10.3837/tiis.2016.04.016

[16] Admir Midzic, Zikrija Avdagic, Samir Omanovic,

"Intrusion Detection System Modeling Based on

Learning from Network Traffic Data", KSII

Transactions on Internet and Information Systems, vol.

12, no. 11, Nov., 2018.

https://doi.org/10.3837/tiis.2018.11.022

