DOI QR코드

DOI QR Code

내부유체 공진을 이용한 'Y'자 수로형 공명구조물내 파도응답 특성

Characteristics of Wave Response in a 'Y' Shape Water Channel Resonator Using Resonance of Internal Fluid

  • 김정록 (제주대학교 해양시스템공학과) ;
  • 조일형 (제주대학교 해양시스템공학과)
  • Kim, Jeongrok (Department of Ocean System Engineering, Jeju National University) ;
  • Cho, Il Hyoung (Department of Ocean System Engineering, Jeju National University)
  • 투고 : 2019.04.03
  • 심사 : 2019.06.26
  • 발행 : 2019.06.30

초록

본 연구에서는 에너지 밀도가 낮은 해역내의 파랑에너지를 증폭시키기 위한 'Y'자 수로형 공명구조물내 파도응답 특성을 살펴보았다. 수로형 공명구조물은 긴 수로와 수로 입구에 유도판(wave guider)을 설치한 형태이다. 입사파의 주기가 공명구조물내 유체의 고유주기와 일치하면 공진이 발생하여 내부유체는 정지파 형태로 크게 증폭한다. 수로내의 파도응답을 해석하기 위하여 정합점근전개법과 경계요소법을 이용하였다. 계산결과는 제주대학교 2차원 조파수조에서 수행된 실험결과와 비교하였고 일치함을 확인하였다. 파랑유도판은 입사파의 주기에 따라 최적의 길이와 설치각도가 존재하며 특히, 공진주기에서 벗어난 주기 대역에서 증폭비를 높이는데 효과적이었다. 수로형 공명구조물내 내부유체의 공진으로 최대파고가 형성되는 파복(anti-node) 위치에 점흡수식 파력발전장치를 위치시킨다면 효과적으로 파랑에너지를 추출할 수 있을 것으로 기대된다.

In this study, the wave responses in a 'Y'shape water channel resonator for amplifying wave energy of a low density has been investigated. A water channel resonator is composed of the long channel and wave guider installed at the entrance. If the period of the incident waves coincides with the natural period of the fluid in a water channel resonator, resonance occurs and the internal fluid amplifies highly to a standing wave form. In order to analyze the wave response in a water channel resonator, we used the matched asymptotic expansion method and boundary element method. The both results were in good agreement with the results of the model test carried out in the two-dimensional wave tank of Jeju National University. Wave guider has an optimum length and installation angle according to the period of the incident wave, and especially effective in enhancing the amplification factor in a period range deviated from the resonance period. It is expected that the wave energy can be effectively extracted by placing the point absorber wave energy converter at the position of anti-node where the maximum wave height is formed by the internal fluid resonance.

키워드

참고문헌

  1. Bellotti, G., Briganti, R., Beltrami, G.M. and Franco, L. (2012). Modal analysis of semi-enclosed basins. Coastal Engineering, 64, 16-25. https://doi.org/10.1016/j.coastaleng.2012.02.002
  2. Chen, H.S. (1986). Effects of bottom friction and boundary absorption on water wave scattering. Applied Ocean Research, 8(2), 99-104. https://doi.org/10.1016/S0141-1187(86)80004-9
  3. Cho, I.H. (1991). Wave responses and ship motions in a harbor excited by long waves. Doctoral dissertation, Seoul National University.
  4. Chou, C.R. and Han, W.Y. (1993). Wave-induced oscillations in harbours with dissipating quays. Coastal Engineering in Japan, 36(1), 1-23. https://doi.org/10.1080/05785634.1993.11924570
  5. Hwang, L.S. and Tuck, E.O. (1970). On the oscillation of harbours of arbitrary shape. J. Fluid Mech. 42(3), 447-463. https://doi.org/10.1017/S0022112070001404
  6. Isaacson, M. and Qu, S. (1990). Waves in a harbour with partially reflecting boundaries. Coastal Engineering, 14(3), 193-214. https://doi.org/10.1016/0378-3839(90)90024-Q
  7. Ippen, A.T. and Goda, Y. (1963). Wave induced oscillations in harbors : The solution for a rectangular harbor connected to the open-sea (No. R63 36). MASSACHUSETTS INST OF TECH CAMBRIDGE HYDRODYNAMICS LAB.
  8. Jeong, W.M., Park, W.S., Suh, K.D. and Chae, J.W. (1999). Resonant characteristics in rectangular harbor with narrow entrance (2. Effects of entrance energy loss). Korean Society of Coastal and Ocean Engineers, 11(4), 216-230.
  9. Lee, J.J. (1970). Wave-induced oscillations in harbours of arbitrary geometry. J. Fluid Mech., 45(2), 375-394. https://doi.org/10.1017/S0022112071000090
  10. Lepelletier, T.G. (1981). Tsunamis-Harbor oscillations induced by nonlinear transient long waves. Doctoral dissertation, California Institute of Technology.
  11. Liu, P.F. (1975). Scattering of water waves by a pair of semi-infinite barriers. J. Appl. Mech., 42, 777-779. https://doi.org/10.1115/1.3423704
  12. Miles, J.W. and Munk, W. (1961). Harbor paradox. J. Waterways Harbors Div. Proc. ASCE 87, 111-130. https://doi.org/10.1061/JWHEAU.0000223
  13. Monkewitz, P.A. (1985). The response of Helmholtz resonators to external excitation. Part 2. Arrays of silit resonators. J. Fluid Mech., 156, 151-166. https://doi.org/10.1017/S0022112085002038
  14. Newman, J.N. (1974). Interaction of water waves with two closely spaced vertical obstacles. J. Fluid Mech., 66, 97-106. https://doi.org/10.1017/S0022112074000085
  15. Rogers, S.R. and Mei, C.C. (1978). Nonlinear resonant excitation of a long and narrow bay. J. Fluid Mech., 88, 161-180. https://doi.org/10.1017/S0022112078002037
  16. Untuata, U. and Mei, C.C. (1975). Effects of entrance loss on harbor oscillations. J. Waterways Harbors and Coastal Eng. Div. ASCE, 101, 161-180. https://doi.org/10.1061/AWHCAR.0000278