DOI QR코드

DOI QR Code

Improvement of Cathode Reaction of Vanadium Redox Flow Battery by Reforming Graphite Felt Electrode Using Cobalt Oxide

바나듐 레독스 흐름전지 양극 반응 향상을 위한 코발트 산화물 전극 개질법 연구

  • Park, Jeongmok (Department of Metallurgical Engineering, Pukyong National University) ;
  • Ko, Minseong (Department of Metallurgical Engineering, Pukyong National University)
  • 박정목 (부경대학교 금속공학과) ;
  • 고민성 (부경대학교 금속공학과)
  • Received : 2019.06.07
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

The demands to improve the performance of the vanadium redox flow battery have attracted an intense research on modifying the carbon-based electrode. In this study, the surface of graphite felt was reformed, using cobalt oxide. The cobalt oxide was implanted into graphite felt during hydrothermal and two step heat treatments. The cobalt was deposited by hydrothermal method and the two step heat treatments made lots of holes on the graphite felt surface which is called as porous surface. The porous surface acts as an electrochemically active site for the cathodic reaction of vanadium redox flow battery. The reformed electrode shows the electrochemically improved performance compared with the pristine electrode.

Keywords

PMGHBJ_2019_v52n3_180_f0001.png 이미지

Fig. 1. SEM images of (a) Pristine GF, (b) Hydrothermal GF, (c) Heat GF, (d) H2 GF

PMGHBJ_2019_v52n3_180_f0002.png 이미지

Fig. 2. SEM image of (a) H2 GF. EDS images show surface elements of H2 GF (b) C, (c) O, (d) Co

PMGHBJ_2019_v52n3_180_f0003.png 이미지

Fig. 3. XRD patterns of each GF (a) Hydrothermal GF CoO3, Heat GF Co3O4, H2 GF α-Co. XRD reference data (b) CoO3 (ICSD : 98-009-3854), Co3O4 (ICSD : 98-006-9375), α-Co (ICSD : 98-005-3805)

PMGHBJ_2019_v52n3_180_f0004.png 이미지

Fig. 4. Cyclic voltammograms of each GF for V (IV)/V (V) redox couple in 0.1 M V (IV) + 3 M H2SO4 electrolyte (a) H2 GF treated at various temperature, (b) H2 GF treated at various time, (c) Pristine GF, Hydrothermal GF, Heat GF, H2 GF, (d) Various scan rates of Pristine GF, (e) Various scan rates of H2 GF, (f) Peak current density vs square root scan rate of Pristine GF and H2 GF

Table 1. Electrochemical performance of GF for V (IV)/V (V) redox couple in 0.1 M V (IV) + 3 M H2SO4 electrolyte

PMGHBJ_2019_v52n3_180_t0001.png 이미지

References

  1. P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, RENEW. SUST. ENERG. REV. 29 (2014) 325-335. https://doi.org/10.1016/j.rser.2013.08.001
  2. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent Progress in Redox Flow Battery Research and Development, Adv. Funct. Mater. 23 (2013) 970-986. https://doi.org/10.1002/adfm.201200694
  3. M.J. Park, J.C. Ryu, W. wang, J.P. Cho, Material design and engineering of next generation flowbattery technologies, NAT. REV. MATER. 2 (2016) 16080. https://doi.org/10.1038/natrevmats.2016.80
  4. B. Sun, M. Skylllas Kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochim. Acta 36 (1991) 513-517. https://doi.org/10.1016/0013-4686(91)85135-T
  5. B. Sun, M. Skyllas Kazakos, Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment, Electrochim. Acta 37 (1992) 1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
  6. B. Sun, M. Skyllas Kazakos, Chemical modification of graphite electrode materials for vanadium redox flow battery application-II. Acid treatment, Electrochim. Acta 37 (1992) 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
  7. X.G. Li, K.L. Huang, S.Q. Liu, N. Tan, L.Q. Chen, Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox flow battery application, Trans. Nonferrous Met. Soc. China 17 (2007) 195-199. https://doi.org/10.1016/S1003-6326(07)60071-5
  8. Z. Gonzalez, S. Vizireanu, G. Dinescu, C. Blanco, R. Santamaria, Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries, NANO ENERGY 1(6) (2012) 833-839. https://doi.org/10.1016/j.nanoen.2012.07.003
  9. Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochem. Commun. 13 (2011) 1379-1382. https://doi.org/10.1016/j.elecom.2011.08.017
  10. C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, J. Power Sources 218 (2012) 455-461. https://doi.org/10.1016/j.jpowsour.2012.06.072
  11. B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery, Nano Lett. 14(1) (2014) 158-165. https://doi.org/10.1021/nl403674a
  12. Y. Xiang, W.A. Daoud, Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery, J. Power Sources 416 (2019) 175-183. https://doi.org/10.1016/j.jpowsour.2019.01.079
  13. H.S. Oktaviano, K. Yamada, K. Waki, Nano-drilled multiwalled carbon nanotubes: characterizations and application for LIB anode materials, Mater. Chem. 22 (2012) 25167-25173. https://doi.org/10.1039/c2jm34684b
  14. S. Abbas, H. Lee, J.Y. Hwang, A. Mehmood, H.J. Shin, S. Mehboob, J.Y. Lee, H.Y. Ha, A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high performance vanadium redox flow battery, Carbon 128 (2018) 31-37. https://doi.org/10.1016/j.carbon.2017.11.066
  15. S. Budavari, The Merck Index, S. Budavari, in: M.J. O'Neil, A. Smith, P.E. Heckelman, J.F. Kinneary (Eds.), twelfth ed, Whitehouse Station, New Jersey (1996) 426-428.
  16. D.H. Kim, K. Waki, Crystal defects on multiwalled carbon nanotubes by cobalt oxide, J. Nanosci. Nanotechnol. 10 (2010) 2375-2380. https://doi.org/10.1166/jnn.2010.1911
  17. P.M. Nia, E. Abouzari-Lotf, P.M. Woi, Y. Alias, T.M. Ting, A. Ahmad, N.W. Che Jusoh, Electrodeposited reduced graphene oxide as a highly efficient and low-cost electrocatalyst for vanadium redox flow batteries, Electrochim. Acta 297 (2019) 31-39. https://doi.org/10.1016/j.electacta.2018.11.109
  18. L. Estevez, D. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, W. Wang, E. Thomsen, J. Liu, J.G. Zhang, V. Sprenkle, B. Li, Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries, CHEMSUSCHEM 9 (2016) 1455-1461. https://doi.org/10.1002/cssc.201600198