DOI QR코드

DOI QR Code

Effects of Na3PO4 Concentration on the Porosity of Plasma Electrolytic Oxidation Coatings Surface on the 6061 Al Alloy, and Subsequent-NaAlO2 Sealing

6061 알루미늄 합금의 플라즈마 전해산화 피막의 표면기공율 및 부식특성에 미치는 Na3PO4 농도 및 NaAlO2 봉공처리의 영향

  • Song, Euiseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • Received : 2019.04.15
  • Accepted : 2019.05.20
  • Published : 2019.06.30

Abstract

In this study, surface porosity and corrosion resistance of PEO coatings prepared on the 6061 Al alloy were investigated in terms of sodium phosphate ($Na_3PO_4$) concentrations in an alkaline solution and $NaAlO_2$ sealing. The surface morphologies of the PEO coatings clearly show that the coatings film formed in $9g\;L^{-1}$ had the lowest porosity. The $NaAlO_2$ sealing was found to remove micropores and cracks existing on the surface of PEO coatings. As a result, the $NaAlO_2$ sealing resulted in the movement of corrosion potential toward more positive value and lower corrosion current density.

Keywords

PMGHBJ_2019_v52n3_117_f0001.png 이미지

Fig. 1. Voltage-time curves as a function of the concentration of Na3PO4.

PMGHBJ_2019_v52n3_117_f0002.png 이미지

Fig. 2. Top view FE-SEM images of PEO coatings; (a) 3 g L-1, (b) 6 g L-1, (c) 9 g L-1, and (d) 12 g L-1. (e) Variation of the porosity and the conductivity in different electrolytes.

PMGHBJ_2019_v52n3_117_f0003.png 이미지

Fig. 3. Top and cross-sectional view FE-SEM images of PEO coatings; (a), (b) before and (c), (d) after NaAlO2 sealing

PMGHBJ_2019_v52n3_117_f0004.png 이미지

Fig. 4. XRD patterns before and after NaAlO2 sealing.

PMGHBJ_2019_v52n3_117_f0005.png 이미지

Fig. 5. Potentiodynamic polarization curves before and after NaAlO2 sealing in 0.6 M NaCl solution.

Table 1. The parameters derived from the potentiodynamic polarization curves.

PMGHBJ_2019_v52n3_117_t0001.png 이미지

References

  1. J.H. Wang, M.H. Du, F.Zh. Han, J. Yang, Effects of the Ratio of Anodic and Cathodic Currents on the Characteristics of Micro-arc Oxidation Ceramic Coatings on Al Alloys, Appl. Surf. Sci. 292 (2014) 658-664. https://doi.org/10.1016/j.apsusc.2013.12.028
  2. V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani, Effect of Duty Cycle and Applied Current Frequency on Plasma Electrolytic Oxidation (PEO) Coating Growth Behavior, Surf. Coat. Techno. 226 (2013) 100-107. https://doi.org/10.1016/j.surfcoat.2013.03.041
  3. V. Shoaei-Rad, M.R. Bayati, H.R. Zargar, J. Javadpour, F. Golestani-Fard, In Situ Growth of $ZrO_2$-$Al_2O_3$ Nano-crystalline Ceramic Coatings Via Micro Arc Oxidation of Aluminum Substrates, Mater. Res. Bull. 47 (2012) 1494-1499. https://doi.org/10.1016/j.materresbull.2012.02.031
  4. M. Vakili-Azghandi, A.Fattah-alhosseini, Effects of Duty Cycle, Current Frequency, and Current Density on Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on 6061 Al Alloy in Artificial Seawater, Metall. Mater. Tran. A 48 (2017) 4681-4692. https://doi.org/10.1007/s11661-017-4205-8
  5. C.M. Abreu, M.J. Cristobal, R. Figueroa, G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation, Appl. Surf. Sci. 327 (2015) 51-61. https://doi.org/10.1016/j.apsusc.2014.11.111
  6. I. Recloux, M. Mouganga, M. Druart, Y. Paint, M.G. Olivier, Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys, Appl. Surf. Sci. 346 (2015) 124-133. https://doi.org/10.1016/j.apsusc.2015.03.191
  7. M. Sabaghi Joni, A. Fattah-alhosseini, Effect of KOH Concentration on the Electrochemical Behavior of Coatings Formed by Pulsed DC Microarc Oxidation (MAO) on AZ31B Mg Alloy, J. Alloys Compd. 661 (2016) 237-244. https://doi.org/10.1016/j.jallcom.2015.11.169
  8. X. Wu, W. Qin, Y. Guo, Zh. Xie, Self-Lubricative Coating Grown by Micro-plasma Oxidation on Aluminum Alloys in the Solution of Aluminate-Graphite, Appl. Surf. Sci. 254 (2008) 6395-6399. https://doi.org/10.1016/j.apsusc.2008.04.001
  9. S. Moon, Anodic Oxidation Treatment Methods of Metals, J. Korean Inst. Suf. Eng., 51 (2018)
  10. J. Liang, P.B. Srinivasan, C. Blawert, W. dietzel, Comparison of electrochemical corrosion behaviour of MgO and $ZrO_2$ coatings on AA50 magnesium alloy formed by plasma electrolytic oxidation Corros. Sci. 51 (2009) 2483-2492.
  11. F. Liu, D.Y. Shan, Y.W. Song, E.H. Han, W. Ke, Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxdiation, Corros. Sci. 53 (2011) 3845-3852. https://doi.org/10.1016/j.corsci.2011.07.037
  12. N. Kim, S. Park, K. Park, J. Choi, Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse, J. Korean Inst. Suf. Eng., 50 (2017) 421-426
  13. J. Lee, S. Kim, Characterization of Ceramic Oxide Layer Produced on Commercial Al alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations, J. Korean Inst. Suf. Eng., 49 (2016) 119-124 https://doi.org/10.5695/JKISE.2016.49.2.119
  14. J. Lee, S. Kim, Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy, J. Korean Inst. Suf. Eng., 49 (2016) 280-285 https://doi.org/10.5695/JKISE.2016.49.3.280
  15. S. Moon, Y. Kim, Lateral growth of PEO films on Al1050 alloy in an alkaline electrolyte, J. Korean Inst. Suf. Eng., 50 (2017) 10-16 https://doi.org/10.5695/JKISE.2017.50.1.10
  16. S. Moon, Y. Kim, PEO film formation behavior of Al1050 alloy under direct current in an alkaline electrolyte, J. Korean Inst. Suf. Eng., 50 (2017) 17-23 https://doi.org/10.5695/JKISE.2017.50.1.17
  17. Z.U. Rehman, S.H. Shin, M. Kaseem, M. Uzair, B.H. Koo, Towards a compact coating formed on Al6061 alloy in phosphate based electrolyte via two-step PEO process and $K_2ZrF_6$ additives, Surf. Coat., 328 (2017) 355-360 https://doi.org/10.1016/j.surfcoat.2017.09.013
  18. A. Fattah-alhosseini, S.O. Gashti, M. Molaie, Effects of Disodium Phosphate Concetration (Na2HPO4.2H2O) on Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coatings on 2024 Al Alloy, J. Mater. Eng. Perform., 27 (2018) 825-834 https://doi.org/10.1007/s11665-018-3124-1
  19. S. Fatimah, M.P. Kamil, J.H. Kwon, M. Kaseem, Y.G. Ko, Dual incorporation of $SiO_2$ and $ZrO_2$ nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties, J. Alloys Compd. xxx (2016) 1-7.
  20. Z. Li, X. Jing, Y. Yuan, M. Zhang, Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques, Corros. Sci. 63 (2012) 358-366. https://doi.org/10.1016/j.corsci.2012.06.018
  21. N. Barati, A. Yerokhin, F. Golestanifard, S. Rastegari, E.I. Meletis, Alumina-zirconia coatings produced by Plasma Electrolytic Oxidation on Al alloy for corrosion resistance improvement, J. Alloys Compd. 724 (2017) 435-442. https://doi.org/10.1016/j.jallcom.2017.07.058
  22. M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of Its Corrosion Resistance: Part II, Appl. Surf. Sci. 258 (2012) 2416-2423. https://doi.org/10.1016/j.apsusc.2011.10.064
  23. M. Kim, H. Yoo, J. Choi, Non-nickel-based sealing of anodic porous aluminum oxide in $NaAlO_2$, Surf. Coat. 310 (2017) 106-112. https://doi.org/10.1016/j.surfcoat.2016.11.100
  24. M. Kaseem, M.P. Kamil, J.H. Kown, Y.G. Ko, Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation, Surf. Coat. 283 (2015) 268-273. https://doi.org/10.1016/j.surfcoat.2015.11.006
  25. M. Stern, A.L. Geary, A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc. 104 (1957) 56-63. https://doi.org/10.1149/1.2428496
  26. D. Galuskova, Corrosion of structural ceramics under sub-critical conditions in aqueous sodium chloride solution and in deionized water. Part II: dissolution of $Al_2O_3$-Based ceramics, J. Am. Ceram. Soc. 94 (2011) 3044-3052. https://doi.org/10.1111/j.1551-2916.2011.04513.x