DOI QR코드

DOI QR Code

Characteristics of Ion Wind Generation According to Application of Acceleration Electrodes

가속전극의 적용에 따른 이온풍 발생 특성

  • Kim, Chol-Gyu (Dept. of Electrical Engineering, Kyungpook National University) ;
  • Jang, Kyeong-Min (Dept. of Electrical Engineering, Kyungpook National University) ;
  • Kim, Jin-Gyu (Dept. of Electrical Engineering, Kyungpook National University)
  • Received : 2019.01.10
  • Accepted : 2019.03.29
  • Published : 2019.05.01

Abstract

Currently, the devices to generate ion winds in air are mainly composed of corona electrodes and induction(ground) electrodes, of which the corona electrodes mainly use needles or wires as electrodes and the induction electrodes use plate electrodes of ring or mesh type. Ion winds can be effectively generated through a diverse combination of corona electrodes and induction electrodes mentioned above. However, only changing the form and structure of corona electrodes and induction electrodes has a limit in raising the speed of ion winds. This paper conducted a study on the characteristics of ion wind generation by additionally installing acceleration electrodes in addition to corona electrodes and induction electrodes to increase the speed of ion winds.

Keywords

Acknowledgement

이 논문은 2017년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF. 2017R1D1A3B03031043)

References

  1. G.D. Haevel, B. Komeili, C.Y. Ching, J.S. Chang, "Electrohydrodynamically Enhanced Capillary Evaporator", IEEE Transaction on Dielectrical Insulations, Vol. 16, No. 2, pp. 456-462, Apr. 2009. https://doi.org/10.1109/TDEI.2009.4815178
  2. F. Yang, N.E. Jewell-Larsen, D.L. Brown, K. Pendergrass, D.A. Parker, I.A. Krichtafovitch, A.V. Mamishev, "Corona driven air propulsion for cooling of electronics", XIIIth International Symposium on High Voltage Engineering, pp. 1-4, 2003.
  3. F.X. Canning, C. Melcher, and E. Winet, "Asymmetrical Capacitors for Propulsion", NASA, NASA/CR-2004-213312, 2004.
  4. J. Wilson, H.D. Perkins, and W.K. Thompson, "An Investigation of Ionic Wind Propulsion", NASA, NASA/TM-2009-215822, 2009.
  5. W.A. Siswanto, K. Ngui, "Performance of Triangular and Square Ionic Lifter Systems", Australian Journal of Basic and Applied Sciences, Vol. 5, No. 9, pp.1433-1438, 2011.
  6. M. Rickard, D. Dunn-Rankin, F. Weinberg, F. Carleton, "Maximizing ion-driven gas flow", Journal of Electrostatics, Vol. 64, No. 6, pp. 368-376, Jun. 2006. https://doi.org/10.1016/j.elstat.2005.09.005
  7. M. Rickard, D. Dunn-Rankin, F. Weinberg, F. Carleton, "Characterization of ionic wind velocity", Journal of Electrostatics, Vol. 63, No. 6-10, pp. 711-716, Jun. 2005. https://doi.org/10.1016/j.elstat.2005.03.033
  8. L. Zhao, K. Adamiak, "EHD flow in air produced by electric corona discharge in pin-plate configuration", Journal of Electrostatics, Vol. 63, No. 3-4, pp. 337-350, Mar. 2005. https://doi.org/10.1016/j.elstat.2004.06.003
  9. W. Qiu, L. Xia, X. Tan, L. Yang, "The Velocity Characteristics of a Serial-Stageed EHD Gas Pump in Air", IEEE Transactions on plasma science, Vol. 38, No. 10, pp. 2848-2853, Oct. 2010. https://doi.org/10.1109/TPS.2010.2060500
  10. M.J. Johnson, R. Tirumala, D.B. Go, "Analysis of geometric scaling of miniature, multi-electrode assisted corona discharges for ionic wind generation", Journal of Electrostatics, Vol. 74, pp. 8-14, Apr. 2015. https://doi.org/10.1016/j.elstat.2014.12.001