DOI QR코드

DOI QR Code

Preliminary growth chamber experiments using thermal infrared image to detect crop disease

적외선 촬영 영상 기반의 작물 병해 모니터링 가능성 타진을 위한 실내 감염 실험

  • Jeong, Hoejeong (Department of Applied Plant Science, Chonnam National University) ;
  • Jeong, Rae-Dong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Ryu, Jae-Hyun (Department of Applied Plant Science, Chonnam National University) ;
  • Oh, Dohyeok (Department of Applied Plant Science, Chonnam National University) ;
  • Choi, Seonwoong (Department of Applied Plant Science, Chonnam National University) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 정회정 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 정래동 (전남대학교 농업생명과학대학 응용생물학과) ;
  • 류재현 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 오도혁 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 최선웅 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2019.06.07
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

The biotic stress of garlic and tobacco infected by bacteria and virus was evaluated using a thermal imaging camera in a growth chamber. The remote sensing technique using the thermal camera detected that garlic leaf temperature increased when the leaves were infected by bacterial soft rot of garlic. Furthermore, the temperature of leaf was relatively high for the leaves where the colony-forming unit per mL was large. Such temperature patterns were detected for tobacco leaves infected by Cucumber Mosaic Virus using thermal images. In addition, the crop water stress index (CWSI) calculated from leaf temperature also increased for the leaves infected by the virus. The event such that CWSI increased by the infection of the virus occurred before visual disease symptom appeared. Our results suggest that the thermal imaging camera would be useful for the development of crop remote sensing technique, which can be applied to a smart farm.

세균과 바이러스에 감염된 작물의 생물적 스트레스 탐지를 원격탐지 기술 기반의 열적외 센서를 이용하여 실내 생육 챔버에서 실험하였다. 감염으로 인한 엽온의 증가와 감염 농도에 따른 엽온 차이를 확인했다. 또한 엽온 기반으로 산출한 CWSI 값은 감염 잎에서 증가하였고, 그러한 현상은 육안으로 병징을 발견하기 하루 전에 시작되었다. 따라서 스마트팜 시스템의 작물 모니터링에 열적외 센서를 이용한다면, 병해의 탐지는 물론 피해 등급 평가, 조기 알람 등에 활용될 수 있을 것이다. 하지만 실제 스마트팜 적용을 위해서는 향후 엽온 측정 정확도 향상 기술, 자료 해석 방법, 생물 비생물적 스트레스 구별 알고리즘 연구 등이 추가로 필요할 것이다.

Keywords

NRGSBM_2019_v21n2_111_f0001.png 이미지

Fig. 1. Temporal change of the difference between normal and bacteria infected garlic leaf temperatures. Gray circle is for 109 cfu/㎖ infection and white circle is for 108 cfu/㎖ infection.

NRGSBM_2019_v21n2_111_f0002.png 이미지

Fig. 2. Temporal changes of the CWSIs of normal leaf and virus infected tobacco leaf. A dotted line indicates the day when disease symptom appeared.

NRGSBM_2019_v21n2_111_f0003.png 이미지

Fig. 3. Relation between CWSI and stomatal conductance for normal leaf.

References

  1. Basnet, B., and J. Bang, 2018: The state-of-the-art of knowledge-intensive agriculture: a review on applied sensing systems and data analytics. Journal of Sensors 2018, 1-13.
  2. Hwang, S. I., J. M. Joo, and S. Y. Joo, 2015: ICT-based smart farm factory systems through the case of hydroponic ginseng plant factory. The Journal of Korean Institute of Communications and Information Sciences 40(4), 780-790. (in Korean with English abstract) https://doi.org/10.7840/kics.2015.40.4.780
  3. Idso, S. B., R. D. Jackson, P. J. Pinter Jr., R. J. Reginato, and J. L. Hatfield, 1981: Normalizing the stress degree-day for environmental variability. Agricultural Meteorology 24, 45-55. https://doi.org/10.1016/0002-1571(81)90032-7
  4. Iwanoff, L., 1928: Zur Methodik der Transpirationsbestimmungam Standort. Berichte der Deutschen Botanischen Gesellschaft 46, 306-310.
  5. Jackson, R. D., 1986: Remote sensing of biotic and abiotic plant stress. Annual review of Phytopathology 24(1), 265-287. https://doi.org/10.1146/annurev.py.24.090186.001405
  6. Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter Jr., 1981: Canopy temperature as a crop water stress indicator. Water Resources Research 17(4), 1133-1138. https://doi.org/10.1029/WR017i004p01133
  7. Jones, H. G., 1992: Plants and Microclimate (2nd ed.), Cambridge University Press, Cambridge, 428pp.
  8. Jung, D.-H., H.-J. Kim, H. S. Kim, J. Choi, J. D. Kim, and S. H. Park, 2019: Fusion of spectroscopy and cobalt electrochemistry data for estimating phosphate concentration in hydroponic solution. Sensors 19(11), 2596. https://doi.org/10.3390/s19112596
  9. Leinonen, I., O. M. Grant, C. P. P. Tagliavia, M. M. Chaves, and H. G. Jones, 2006: Estimating stomatal conductance with thermal imagery. Plant, Cell & Environment 29(8), 1508-1518. https://doi.org/10.1111/j.1365-3040.2006.01528.x
  10. Mahlein, A. K., 2016: Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Plant disease 100(2), 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE
  11. Moller, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor, V. Ostrovsky, M. Sprintsin, and S. Cohen, 2006: Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of experimental botany 58(4), 827-838. https://doi.org/10.1093/jxb/erl115
  12. Prashar, A., and H. Jones, 2014: Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4(3), 397-417. https://doi.org/10.3390/agronomy4030397
  13. Walter, A., R. Finger, R. Huber, and N. Buchmann, 2017: Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences 114(24), 6148-6150.
  14. Wolfert, S., L. Ge, C. Verdouw, and M. J. Bogaardt, 2017: Big data in smart farming-a review. Agricultural Systems 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  15. Yeo, U. H., I. B. Lee, K. S. Kwon, T. Ha, S. J. Park, R. W. Kim, and S. Y. Lee, 2016: Analysis of Research Trend and Core TechnologiesBased on ICT to Materialize Smart-farm. Protected Horticulture and Plant Factory 25(1), 30-41. (in Korean with English abstract) https://doi.org/10.12791/KSBEC.2016.25.1.30