Fig. 1. Temporal change of the difference between normal and bacteria infected garlic leaf temperatures. Gray circle is for 109 cfu/㎖ infection and white circle is for 108 cfu/㎖ infection.
Fig. 2. Temporal changes of the CWSIs of normal leaf and virus infected tobacco leaf. A dotted line indicates the day when disease symptom appeared.
Fig. 3. Relation between CWSI and stomatal conductance for normal leaf.
References
- Basnet, B., and J. Bang, 2018: The state-of-the-art of knowledge-intensive agriculture: a review on applied sensing systems and data analytics. Journal of Sensors 2018, 1-13.
- Hwang, S. I., J. M. Joo, and S. Y. Joo, 2015: ICT-based smart farm factory systems through the case of hydroponic ginseng plant factory. The Journal of Korean Institute of Communications and Information Sciences 40(4), 780-790. (in Korean with English abstract) https://doi.org/10.7840/kics.2015.40.4.780
- Idso, S. B., R. D. Jackson, P. J. Pinter Jr., R. J. Reginato, and J. L. Hatfield, 1981: Normalizing the stress degree-day for environmental variability. Agricultural Meteorology 24, 45-55. https://doi.org/10.1016/0002-1571(81)90032-7
- Iwanoff, L., 1928: Zur Methodik der Transpirationsbestimmungam Standort. Berichte der Deutschen Botanischen Gesellschaft 46, 306-310.
- Jackson, R. D., 1986: Remote sensing of biotic and abiotic plant stress. Annual review of Phytopathology 24(1), 265-287. https://doi.org/10.1146/annurev.py.24.090186.001405
- Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter Jr., 1981: Canopy temperature as a crop water stress indicator. Water Resources Research 17(4), 1133-1138. https://doi.org/10.1029/WR017i004p01133
- Jones, H. G., 1992: Plants and Microclimate (2nd ed.), Cambridge University Press, Cambridge, 428pp.
- Jung, D.-H., H.-J. Kim, H. S. Kim, J. Choi, J. D. Kim, and S. H. Park, 2019: Fusion of spectroscopy and cobalt electrochemistry data for estimating phosphate concentration in hydroponic solution. Sensors 19(11), 2596. https://doi.org/10.3390/s19112596
- Leinonen, I., O. M. Grant, C. P. P. Tagliavia, M. M. Chaves, and H. G. Jones, 2006: Estimating stomatal conductance with thermal imagery. Plant, Cell & Environment 29(8), 1508-1518. https://doi.org/10.1111/j.1365-3040.2006.01528.x
- Mahlein, A. K., 2016: Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Plant disease 100(2), 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE
- Moller, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor, V. Ostrovsky, M. Sprintsin, and S. Cohen, 2006: Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of experimental botany 58(4), 827-838. https://doi.org/10.1093/jxb/erl115
- Prashar, A., and H. Jones, 2014: Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4(3), 397-417. https://doi.org/10.3390/agronomy4030397
- Walter, A., R. Finger, R. Huber, and N. Buchmann, 2017: Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences 114(24), 6148-6150.
- Wolfert, S., L. Ge, C. Verdouw, and M. J. Bogaardt, 2017: Big data in smart farming-a review. Agricultural Systems 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
- Yeo, U. H., I. B. Lee, K. S. Kwon, T. Ha, S. J. Park, R. W. Kim, and S. Y. Lee, 2016: Analysis of Research Trend and Core TechnologiesBased on ICT to Materialize Smart-farm. Protected Horticulture and Plant Factory 25(1), 30-41. (in Korean with English abstract) https://doi.org/10.12791/KSBEC.2016.25.1.30