DOI QR코드

DOI QR Code

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers

친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구

  • Park, Cheol Oh (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 박철오 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2019.04.10
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.

본 연구에서는 다공성 Polyacrylonitrile (PAN) 중공사막을 지지체막으로 하여 Poly styrene sulfonic acid (PSSA)와 polyethyleneimine (PEI)을 이용하여 layer-by-layer법으로 선택층을 형성시켰다. 코팅용액에 Mg염을 첨가하여 염석법(salting out method)을 이용하였다. 코팅용액의 이온세기, 고분자 농도, 코팅시간 등을 달리하여 나노여과막을 제조하였으며 NaCl, $MgCl_2$, $CaSO_4$ 100 mg/L를 공급액으로 하여 2 atm의 구동 압력에서 투과도와 염 배제율을 평가하였다. PSSA 20,000 ppm, 코팅시간 3분, 이온세기 1.0, PEI 30,000 ppm, 코팅시간 1분, 이온세기 0.1의 조건으로 코팅한 막이 가장 우수한 성능을 보여 주었다. 100 ppm의 NaCl, $MgCl_2$, $CaSO_4$ 공급액에서 각각 20.4, 19.4, 18.7 LMH의 투과도와 67, 90, 66.6%의 염 배제율을 나타내었다.

Keywords

References

  1. M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, "Recent developments in photocatalytic water treatment technology: A review", Water Res., 44, 2997 (2010). https://doi.org/10.1016/j.watres.2010.02.039
  2. T. A. Ternes, M. Meisenheimer, D. Mcdowell, F. Sacher, H. J. Brauch, B. H. Gulde G. Preuss, U. Wilme, and N. Z. Seibert, "Removal of pharmaceuticals during drinking water treatment", Environ. Sci. Technol., 36, 3855 (2002). https://doi.org/10.1021/es015757k
  3. F. I. R. Ahmadun, A. Pendashteha, L. C. Abdullaha, D. R. A. Biaka, S. S. Madaeni, and Z. Z. Abidin, "Review of technologies for oil and gas produced water treatment", J. Hazard. Mater., 170, 530 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044
  4. A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, "Advances in seawater desalination technologies", Desalination, 221, 47 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  5. P. R. Gogate and A. B. Pandit, "A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions", Adv. Environ. Res., 8, 501 (2004). https://doi.org/10.1016/S1093-0191(03)00032-7
  6. S. Mondal and S. R. Wickramasinghe, "Produced water treatment by nanofiltration and reverse osmosis membranes", J. Membr. Sci., 322, 162 (2008). https://doi.org/10.1016/j.memsci.2008.05.039
  7. Y. K. Guu, "Desalination of spent brine from prune pickling using a nanofiltration membrane system", J. Agric. Food Chem., 44, 2384 (1996). https://doi.org/10.1021/jf950754a
  8. N. Ghaffour, T. M. Missimer, and G. L. Amy, "Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability", Desalination, 309, 197 (2013). https://doi.org/10.1016/j.desal.2012.10.015
  9. S. A. Avlonitis, K. Kouroumbas, and N. Vlachakis, "Energy consumption and membrane replacement cost for seawater RO desalination plants", Desalination, 157, 151 (2003). https://doi.org/10.1016/S0011-9164(03)00395-3
  10. J. E. Cadotte, R. S. King, R. J. Majerle, and R. J. Petersen, "Interfacial synthesis in the preparation of reverse osmosis membranes", J. Macromol. Sci. Chem., 15, 727 (1981). https://doi.org/10.1080/00222338108056764
  11. Q. Chen, P. Yu, W. Huang, S. Yu, M. Liu, and C. Gao, "High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal", J. Membr. Sci., 492, 312 (2015). https://doi.org/10.1016/j.memsci.2015.05.068
  12. Y. S. Jeon and J. W. Rhim, "Preparation of the multilayer membrane using the phase separated and pressurization (PSP) method", Membr. J., 25, 391 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.391
  13. C. Liu, W. Fang, S. Chou, L. Shi, A. G. Fane, and R. Wang, "Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions", Desalination, 308, 147 (2013). https://doi.org/10.1016/j.desal.2012.07.027
  14. W. Jin, A. Toutianoush, and B. Tieke, "Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes", Langmuir, 19, 2550 (2003). https://doi.org/10.1021/la020926f
  15. Y. F. Fan, Y. N. Wang, Y. G. Fan, and J. B. Ma, "Preparation of insulin nanofiltration and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption", In. J. Pharm., 324, 158 (2006). https://doi.org/10.1016/j.ijpharm.2006.05.062