DOI QR코드

DOI QR Code

Complexity Comparison of Center of Pressure between Fallers and Non-fallers during Gait

보행 시 낙상 유무에 따른 압력중심점의 복잡성 비교

  • Park, Sang Kyoon (Department of Physical Education, College of Sport Science of Korea National Sport University) ;
  • Ryu, Sihyun (Motion Innovation Centre, Korea National Sport University) ;
  • Kim, Jongbin (Motion Innovation Centre, Korea National Sport University) ;
  • Yoon, Sukhoon (Department of Community Sport, Korea National Sport University) ;
  • Ryu, Jiseon (Department of Health and Exercise Science, College of Lifetime Sport of Korea National Sport University)
  • Received : 2019.04.29
  • Accepted : 2019.05.07
  • Published : 2019.06.30

Abstract

Objective: The purpose of this study was to investigate the effect of the falls on the center of pressure (CoP) complexity during gait using non-linear approximate entropy (ApEn). Method: 20 elderly women with experience of falling ($age=72.55{\pm}5.42yrs$; $height=154.40{\pm}4.26cm$; $body\;weight=57.40{\pm}6.21kg$; $preferred\;gait\;speed=0.52{\pm}0.17m/s$) and 20 elderly women with no experience of falling ($age=71.90{\pm}2.90yrs$; $height=155.28{\pm}4.73cm$; $body\;weight=56.70{\pm}5.241kg$; $preferred\;gait\;speed=0.56{\pm}0.13m/s$) were recruited for the study. While they were walking at their preferred gait speed on a treadmill (instrumented dual belt treadmills, Bertec, USA) with a force plate CoP data were collected for the 20 strides. The complexity of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral CoP in the fallers showed smaller about 16% compared to the non-fallers (p<.05). The ApEn of the antero-posterior CoP of the fallers showed smaller about 12% compared to the non-fallers, but the difference was not statistically significant. Conclusion: Based on the results of this study, the reduction of the medio-lateral CoP complexity in the elderly gait would be an index to determine the potential fall.

Keywords

OOOSBL_2019_v29n2_113_f0001.png 이미지

Figure 1. Example of CoP and their surrogate data for an individual of the fall group.

OOOSBL_2019_v29n2_113_f0002.png 이미지

Figure 2. Original CoP and their surrogate data between fallers and non-fallers.

OOOSBL_2019_v29n2_113_f0003.png 이미지

Figure 3. ApEn values of CoP between fall and non-fall groups.

Table 1. ApEn in original CoP and their surrogate data and statistic results between fallers and non-fallers

OOOSBL_2019_v29n2_113_t0001.png 이미지

Table 2. ApEn values of CoP between fall and non-fall groups and their statistic test results

OOOSBL_2019_v29n2_113_t0002.png 이미지

References

  1. Bergland, A., Jarnlo, G. B. & Laake, K. (2003). Predictor of falls in the elderly by location. Aging Clinical Experimental Research, 15, 43-50. https://doi.org/10.1007/BF03324479
  2. Buzzi, U. H., Stergiou, N., Kurz, M. J., Hageman, P. A. & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443. https://doi.org/10.1016/S0268-0033(03)00029-9
  3. Collins, J. J. & De Luca, C. J. (1995). The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research, 103(1), 151-163. https://doi.org/10.1007/BF00241972
  4. Costa, M. & Peng, C. K., Goldberger, A. L. & Hausdorff, J. M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A, 330, 53-60. https://doi.org/10.1016/j.physa.2003.08.022
  5. Dingwell J. B. & Cusumano, J. P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos, 10(4), 848-863. https://doi.org/10.1063/1.1324008
  6. Ferine, G. R., Gryfe, C. I., Holiday, P. J. & Liewellyn, A. (1982). The relationship of postural sway in standing to the incidence of falls in geriatric subjects. Age and Aging, 11(1), 11-16. https://doi.org/10.1093/ageing/11.1.11
  7. Gauchard, G. C., Gangloff, P. Jeanel, C. & Perrin, P. P. (2003). Physical activity improve gaze and posture control in the elderly. Neuroscience Research, 45(4), 409-417. https://doi.org/10.1016/S0168-0102(03)00008-7
  8. Goldberger, A. L. (1996). Nonlinear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet, 347, 1312-1314. https://doi.org/10.1016/S0140-6736(96)90948-4
  9. Jeong, J. S. (2001). webzine.kps.or.kr/contents/data/webzine/.../15124415231.
  10. Johnell, O. & Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International, 17, 1726-1733. https://doi.org/10.1007/s00198-006-0172-4
  11. Kantz, H. & Schreiber, S. (1997). Nonlinear time series analysis. Cambrige University Press, Cambridge, UK.
  12. Kim, I. H. (2008). Nonlinear dynamical analysis of electroencephalogram in adolescents with attention-deficit/hyperactivity disorder during cognitve task. A dissertation for the degree of doctor science. Graduate school of Kongju National University.
  13. Ko, J. H. & Newell, K. M. (2016). Aging and the complexity of center of pressure in static and dynamic postural tasks. Neuroscience Letters, 610, 104-109. https://doi.org/10.1016/j.neulet.2015.10.069
  14. Lipsitz, L. A. (2002). Dynamics of stability: The physiologic basis of functional health and frailty. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57A(3), B115-B125. https://doi.org/10.1093/gerona/57.3.B115
  15. Mahoney, J. E. (1998). Immobility and falls. Clinics in Geriatric Medicine, 14, 699-726. https://doi.org/10.1016/S0749-0690(18)30087-9
  16. Maki, B. E., Holliday, P. J. & Topper, A. K. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. Journal of Gerontology, 49, 72-84.
  17. Melzer, I., Benjuya, N. & Kaplanski, J. (2004). Postural stability in the elderly: a comparison between fallers and non-fallers. Age and Ageing, 33(6), 602-607. https://doi.org/10.1093/ageing/afh218
  18. Melzer, I. & Oddsson, L. I. (2004). The effect of a cognitive task on voluntary step execution in healthy elderly and young individuals. Journal of American Geriatrics Society, 52(8), 1255-1262. https://doi.org/10.1111/j.1532-5415.2004.52353.x
  19. Melzer, I., Kurz, I. & Oddsson, L. I. E. (2010). A retrospective analysis of balance control parameters in elderly fallers and non-fallers. Clinical Biomechanics, 25, 984-988. https://doi.org/10.1016/j.clinbiomech.2010.07.007
  20. Newell, K. M., Deutsch, K. M., Sosnoff, J. J. & Mayer-Kresss, G. (2006). Variability in motor output as noise: A default and erroneous proposition? Movement system variability (pp.3-23) Champaign, IL: Human Kinetics.
  21. Nigg, B. M. (1986). Biomechanics of running shoes: Champaign, Ill.: Human Kinetics Publishers.
  22. Palmieri, R. M., Ingersoll, C. D., Stone, M. B. & Krause, B. A. (2002). Center-of-pressure parameters used in the assessment of postural control. Journal of Sport Rehabilitation, 11(1), 51-66. https://doi.org/10.1123/jsr.11.1.51
  23. Patterson, R., Papa, E., Knebl, J. & Bugnariu, N. (2018). Evaluation of a more sensitive measure for prediction of changes in dynamic postural stability and fall risk. Proceeding of 8th World Congress of Biomechanics. www.wcb2018.com.
  24. Piirtola, M. & Era, P. (2006). Force platform measurements as predictors of falls among older people. Gerontology, 52(1), 1-16. https://doi.org/10.1159/000089820
  25. Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88, 2297-2301. https://doi.org/10.1073/pnas.88.6.2297
  26. Preatoni, E., Ferrario, M., Dona, G., Hamill, J. & Rodano, R. (2010). Motor variability in sports: A non-linear analysis of race walking. Journal of sports Sciences, 28(12), 1327-1336. https://doi.org/10.1080/02640414.2010.507250
  27. Preatoni, E., Hamill, J., Harrison, A. J., Hayes, K., Emmerik, V. R., Wilson, C. & Rodano, R. (2014). Movement variability and skills monitoring in sports. Sports Biomechanics, 12(2), 69-92. https://doi.org/10.1080/14763141.2012.738700
  28. Rao, S. S. (2005). Prevention of falls in older patients. American Family Physician, 72, 81-88.
  29. Ryu, J. S. (2006). The elderly's coupling pattern between the foot and the tibia and its variability during walking. The Korean Journal of Physical Education, 45(1), 747-756.
  30. Ryu, J. S. (2008). Dynamic stability analysis of patients with degenerative osteoarthritise during walking. Korean Journal of Sport Biomechanics, 18(1), 21-30. https://doi.org/10.5103/KJSB.2008.18.1.021
  31. Ryu, J. S., Yoo, S. H., Park, S. K. & Yoon, S. H. (2012). Comparisons between Skilled and Less-Skilled Players' Balance in Hakdariseogi. Korean Journal of Sport Biomechanics, 22(1), 55-63. https://doi.org/10.5103/KJSB.2012.22.1.055
  32. Ryu, J. S. (2014). Variability of GRF components between increased running times during prolonged run. Korean Journal of Sport Biomechanics, 24(4), 359-365. https://doi.org/10.5103/KJSB.2014.24.4.359
  33. Schmit, J. M., Riley, M. A., Dalvi, A., Sahay, P. K. & Shockley, K. D. (2006). Deterministic center of pressure patterns characterize postural instability in Parkinson's disease. Experimental Brain Research, 168, 357-367. https://doi.org/10.1007/s00221-005-0094-y
  34. Schreiber, T. & Schmitz, A. (2000). Surrogate time series. Physical Review Letters, 142, 346-382.
  35. Seigle, B., Ramdani, S. & Bernard, P. L. (2009). Dynamical structure of center of pressure fluctuations in elderly people. Gait & Posture, 30, 223-226. https://doi.org/10.1016/j.gaitpost.2009.05.005
  36. Stel, V. S., Smit, J. H., Pluijm, S. M. & Lips, P. (2003) Balance and mobility performance as treatable risk factors for recurrent falling in older persons. Journal of Clinical Epidemiology, 56, 659-668. https://doi.org/10.1016/S0895-4356(03)00082-9
  37. Stergiou, N. (2004). Innovative analyses of human movement, Human Kinetics, 76-84.
  38. Stevens, J. A., Ballesteros, M. F., Mack, K. A., Rudd, R. A., DeCaro, E. & Adler, G. (2012). Gender difference in seeking care for falls in the aged Medicare population. American Journal of Preventive Medicine, 43, 59-62. https://doi.org/10.1016/j.amepre.2012.03.008
  39. Teasdale, N. & Simoneau, M. (2001). Attentional demands for postural control: the effects of aging and sensory reintegration. Gait & Posture, 14, 203-210. https://doi.org/10.1016/S0966-6362(01)00134-5
  40. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, J. D. (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica A, D58, 77-94.
  41. Tinetti, M. E. & Speechley, M. (1989). Prevention of the falls among the elderly. The New England Journal of Medicine, 320(16), 1055-1059. https://doi.org/10.1056/NEJM198904203201606
  42. Vaillancourt, D. E. & Newell, K. M. (2002). Changing complexity in human behavior and physiology through aging and disease. Neurobiology of Aging, 23, 1-11. https://doi.org/10.1016/S0197-4580(01)00247-0
  43. Whipple, R. H., Wolfson, L. I. & Amerman, P. M. (1987). The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. Journal of the American Geriatrics Society, 35, 13-20. https://doi.org/10.1111/j.1532-5415.1987.tb01313.x
  44. Wolfson, L., Judge, J., Whipple, R. & King, M. (1995). Strength is major factor in balance, gait, and the occurrence of falls. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50, 64-67. https://doi.org/10.1093/gerona/50A.Special_Issue.64
  45. Wolgson, L., Whipple, R., Derby, C. A., Amerman, P., Murphy, T., Tobin, N. J. & Nashner, L. A. (1992). A dynamic posturography study of balance in healthy elderly. Neurology, 42(11), 2069-2075. https://doi.org/10.1212/WNL.42.11.2069
  46. Yamada, N. (1995). Chaotic swaying of the upright posture. Human Movement Science, 14, 711-726. https://doi.org/10.1016/0167-9457(95)00032-1
  47. Yoon, S. T. (2016). Effect of body weights and Wearing Positions of Bag on Stance time and COP Variables during Level Walking. Journal of Marine Sport Studies, 6(2), 1-7.
  48. Zachazewski, J., Magee, D. J., Quillen, W. S. & Saunders, W. B. (1998). Athletic Injuries and Rehabilitation. Journal of the Canadian Chiropractic Association, 42(1), 60.