DOI QR코드

DOI QR Code

Surface Reflectance Retrieval from Satellite Observation (OMI) over East Asia Using Minimum Reflectance Method

위성관측 오존계에서 최소 반사도법을 이용하여 동아시아 지역의 지면반사도 산출

  • Shin, Hee-Woo (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Yoo, Jung-Moon (Department of Science Education, Ewha Womans University) ;
  • Lee, Kwon-Ho (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 신희우 (강릉원주대학교 대기환경과학과) ;
  • 유정문 (이화여자대학교 과학교육과) ;
  • 이권호 (강릉원주대학교 대기환경과학과)
  • Received : 2019.03.27
  • Accepted : 2019.06.10
  • Published : 2019.06.30

Abstract

This study derived spectral Lambertian Equivalent Reflectance (LER) over East Asia from the observations of Ozone Monitoring Instrument (OMI) onboard polar-orbit satellite Aura. The climatological (October 2004-September 2007) LER values were compared with the surface reflectance products of OMI or MODerate resolution Imaging Spectroradiometer (MODIS) in terms of the atmosphere-environment variables as follows: wavelength (UV, visible), surface properties (land, ocean), and cloud filtering. Four kinds of LER outputs in the UV and visible region (328-500 nm) were retrieved based on the averages of lowest (1, 5, and 10%) surface reflectance values as well as the minimum reflectance. The average of the lowest 10% among them was in best agreement with the OMI product: correlation coefficient (0.88), RMSE (1.0%) and mean bias (-0.3%). The 10% average and OMI LER values over ocean were 2% larger in UV than in visible, while the values over land were 1% smaller. The LER variability on the wavelength and surface property was highest (~3%) in the condition of both land and visible, particularly in the ice-cap and desert regions. The minimum reflectance values over the oceanic and inland sample areas overestimated the MODIS product by 1.4%. This high-resolution MODIS observations were effective in removing cloud contamination. The relative errors of the 10% average to MODIS were smaller (-0.6%) over ocean but larger (1.5%) over land than those of the OMI product to MODIS. The reduced relative error in the OMI product over land may result from additional cloud filtering using the Landsat data. This study will be useful when retrieveing the surface reflectance from geostationary-orbit environmental satellite (e.g., Geostationary Environment Monitoring Spectrometer; GEMS).

극궤도 위성(Aura)에 탑재되어 운용 중인 Ozone Monitoring Instrument (OMI)를 이용하여 동아시아 지역에 대한 등가 람버시안 반사도(Lambertian Equivalent Reflectance; LER)를 유도하였다. 본 연구의 LER 기후값(2004년 10월-2007년 9월)은 기존 OMI 및 MODIS 결과와 다음 대기환경 변수의 관점에서 비교분석되었다. 파장(자외선, 가시광선), 지표 특성(육지, 해양), 그리고 구름 제거. 자외선 및 가시광선 파장역(328-500 nm)에서 산출된 LER은 최소 반사도뿐만 아니라 세 종류 하위 평균(1, 5, 10% 이내)으로 산출되었다. 이들 중에 10% 평균값이 OMI 결과와 가장 잘 일치하였다. 여기서 상관계수는 0.88, 평균 제곱근 오차는 1.0%. 그리고 평균 편차는 -0.3%이었다. 10% 평균값과 기존 OMI LER값은 해양에서 가시광선에 비하여 자외선 영역에서 큰(~2%) 반면에 육지에서는 작게(~1%) 나타났다. 또한 파장 및 지표 특성에 따른 LER 변동폭은 육지 및 가시광선 조건에서, 특히 만년설 및 사막 지역에서 크게 나타났다(~3%). 최소 반사도값은 해양 및 육지의 표본 지역에서 MODIS에 비하여 약 1.4% 과대 산출되었다. 이러한 원인은 고해상도 MODIS 자료에서의 효과적인 구름 제거에 있다고 분석되었다. MODIS에 대한 10% 평균값의 상대 오차는 기존 OMI 산출물에 비하여 해양에서 작았으나(-0.6%) 육지에서는 컸다(1.5%). OMI 산출물 경우에 육지에서의 작은 상대 오차는 Landsat 자료 이용한 효과적인 구름 제거에 있다고 추정되었다. 본 연구는 정지궤도 환경위성(예, GEMS) 관측을 이용한 지면반사도 산출에 기여할 것으로 기대된다.

Keywords

References

  1. Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H., and Shettle, E.P., 1986, AFGL atmospheric constituent profiles (0.120 km). Environmental Research Papers, 954.
  2. Bhartia, P.K., 2002, OMI algorithm theoretical basis document: volume III, OMI ozone products. ATBD-OMI-O2.
  3. Brovkin, V., Boysen, L., Gayler, V., Loew, A., and Claussen, M., 2013, Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. Journal of Advances in Modeling Earth Systems, 5, 48-57. https://doi.org/10.1029/2012MS000169
  4. Doda, D.D., and Green, A.E.S., 1980, Surface reflectance measurements in the UV from an airborne platform. part1. Applied Optics, 19(13), 2140-2145. https://doi.org/10.1364/AO.19.002140
  5. Doda, D.D., and Green, A.E.S., 1981, Surface reflectance measurements in the UV from an airborne platform. part2. Applied Optics, 20(4), 636-642. https://doi.org/10.1364/AO.20.000636
  6. Douch Space, 2008, GDPS input/output data specification (IODS) volume 2: level 1B output products and metadata. SD-OMIE-7200-DS-467, 8, 1-69.
  7. Herman, J., and Celarier, E.A., 1997, Earth surface reflectivity climatology at 340-380 nm from TOMS data. Journal of Geophysical Research: Atmospheres, 102(D23), 28003-28011. https://doi.org/10.1029/97JD02074
  8. Hsu, N.C., Jeong, M.J., Bettenhausen, C., Sayer, A.M., Seftor, C.S., Huang, J., and Tsay, S.C., 2013, Enhanced deep blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research, 118, 9296-9315. https://doi.org/10.1002/jgrd.50712
  9. Hsu, N.C., Mcpeters, R.D., Seftor, C.J., and Thompson, A.M., 1997, Effect of an improved cloud climatology on the total ozone mapping spectrometer total ozone retrieval. Journal of Geophysical Research, 102, 4247-4255. https://doi.org/10.1029/96JD03128
  10. Hsu, N.C., Tsay, S.C., King, M.D., and Herman, J.R., 2004, Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569. https://doi.org/10.1109/TGRS.2004.824067
  11. Hsu, N.C., Tsay, S.C., King, M.D., and Herman, J.R., 2006, Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180-3195. https://doi.org/10.1109/TGRS.2006.879540
  12. Kaufman, Y.D., Tanre, L.A., Remer, E., Vermote, A.C., and Holben, B., 1997, Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research, 102(D14), 17051-17067. https://doi.org/10.1029/96JD03988
  13. Kleipool, Q., Dobber, M., Haan, J.D., and Levelt, P., 2008, Earth surface reflectance climatology from 3 years of OMI data. Journal of Geophysical Research, 113(D18), D18308. https://doi.org/10.1029/2008JD010290
  14. Koelemeijer, R.B.A., de Haan, J.F., and Stammes, P., 2003, A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations. Journal of Geophysical Research, 108(D2), 4070. https://doi.org/10.1029/2002JD002429
  15. Kwon, Y.I., Lee, S.G., Kim, K.H., Shin, J.B., and Yu, K.M., 2004, Geochemical characteristic of the surface sediments from the middle-to-eastern Taklimakan desert, China. Journal of the Geological Society of Korea, 40(4), 383-393.
  16. Lee, C., Richter, A., Weber, M., and Burrows, J.P., 2008, SO2 retrieval from SCIAMACHY using the weighting function DOAS (WFDOAS) technique: comparison with standard DOAS retrieval. Atmospheric Chemistry and Physics, 8, 6137-6145. https://doi.org/10.5194/acp-8-6137-2008
  17. Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., and Brewin, R., 2013, Penetration of UV-visible solar radiance in the global oceans: insights from ocean color remote sensing. Journal of Geophysical Research, 118, 4241-4255. https://doi.org/10.1002/jgrc.20308
  18. Nolin, A.R., Armstrong, L., and Maslanik, J., 1998, Near-real-time SSM/I-SSMIS EASE-grid daily global ice concentration and snow extent, version 5. https://nsidc.org/data/nise.
  19. Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., Zhang, X., Jin, Y., Muller, J.P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont, R.P., Hu, B., Liang, S., Privette, J.L., and Roy, D., 2002, First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1), 135-148. https://doi.org/10.1016/S0034-4257(02)00091-3
  20. Shin., H.W., and Yoo, J.M., 2018, Sensitivity experiment of surface reflectance to error-inducing variables based on the GEMS satellite observations. Journal of the Korean Earth Science Society, 39(1), 53-66. https://doi.org/10.5467/JKESS.2018.39.1.53
  21. Sissenwine, N., Dubin, M., and Wexler, H., 1962, The U.S. standard atmosphere, 1962. Journal of Geophysical Research, 67(9), 3627-3630. https://doi.org/10.1029/JZ067i009p03627
  22. Spurr, R.J., 2006, VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2), 316-342. https://doi.org/10.1016/j.jqsrt.2006.05.005
  23. Stammes, P., 2002, OMI algorithm theoretical basis documet: volume II, OMI ozone proudcts. ATBD-OMI-O2.
  24. Thomas, N.P., 2004, The EOS aqua/aura experience: lessons learned on design, integration, and test of earth-observing satellites. Northrop Grumman Space Technology, Redondo Beach, CA90278.
  25. Tilstra, L.G., Tuinder, O.N.E., Wang, P., and Stammes, P., 2017, Surface reflectivity climatologies from UV to NIR determined from earth observations by GOME-2 and SCIAMACHY. Journal of Geophysical Research, 122(7), 4084-4111. https://doi.org/10.1002/2016jd025940
  26. van den Oord, G.H.J., Rozemeijer, N.C., Schenkelaars, V., Levelt, P.F., Dobber, M.R., Voors, R.H.M., Claas, J., De Vries, J., Ter Linden, M., De Haan, C., and de Berg, T.V., 2006, OMI level 0 to 1b processing and operational aspects. IEEE Transactions on Geoscience and Remote Sensing, 44, 1380-1397. https://doi.org/10.1109/TGRS.2006.872935
  27. Veefkind, J.P., de Haan, J.F., Brinksma, E.J., Kroon, M., and Levelt, P.F., 2006, Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique. IEEE transactions on geoscience and remote sensing, 44(5), 1239-1244. https://doi.org/10.1109/TGRS.2006.871204
  28. Vermote, E.F., Kotchenova, S.Y., and Ray, J.P., 2015, MODIS surface reflectance user's guide. MODIS Land Surface Reflectance Science Computing Facility, 1-40.
  29. Wang, M., Tang, J., and Shi, W., 2007, MODIS-derived ocean color products along the China east coastal region. Geophysical Research Letters, L06611, 34. https://doi.org/10.1029/2006GL028599
  30. Wong, M.S., Lee, K.H., Nichol, J.E., and Li, Z.Q., 2010, Retrieval of aerosol optical thickness using MODIS $500{\times}500\;m^2$, a study in Hong Kong and the Pearl River delta region. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3318-3327. https://doi.org/10.1109/TGRS.2010.2045124