Figure 4.1. 구조적 인과모형식에 대응되는 방향성 비순환 그래프들. 좌측: (4.2), 우측: (4.3).
참고문헌
- Abadie, A. and Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects, Econometrica, 74, 235-267. https://doi.org/10.1111/j.1468-0262.2006.00655.x
- An, W. and Ding, Y. (2018). The landscape of causal inference: perspective from citation network analysis, The American Statistician, 72, 265-277. https://doi.org/10.1080/00031305.2017.1360794
- Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models, Biometrics, 61, 962-973. https://doi.org/10.1111/j.1541-0420.2005.00377.x
- Belloni, A., Chernozhukov, V., Fernandez-Val, I., and Hansen, C. (2017). Program evaluation and causal inference with high-dimensional data. Econometrica, 85, 233-298. https://doi.org/10.3982/ECTA12723
- Benkeser, D. (2018). rtmle: Doubly-Robust Nonparametric Estimation and Inference. R package version 1.0.4. https://CRAN.R-project.org/package=drtmle
- Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching, Journal of Economic Surveys, 22, 31-72. https://doi.org/10.1111/j.1467-6419.2007.00527.x
- Chakraborty, B. and Murphy, S. A. (2014). Dynamic treatment regimes, Annual Review of Statistics and Its Application, 1(1):447-464. https://doi.org/10.1146/annurev-statistics-022513-115553
- Chan, D., Ge, R., Gershony, O., Hesterberg, T., and Lambert, D. (2010). Evaluating online ad campaigns in a pipeline. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '10), 7-15.
- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., and Newey, W. (2017). Double/debiased/Neyman machine learning of treatment effects, American Economic Review, 107, 261-265. https://doi.org/10.1257/aer.p20171038
- Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, E. L. (2009). Smoking and lung cancer: Recent evidence and a discussion of some questions. International Journal of Epidemiology, 38, 1175-1191. https://doi.org/10.1093/ije/dyp289
- Crump, R. K., Hotz, V. J., Imbens, G. W., and Mitnik, O. A. (2009). Dealing with limited overlap in estimation of average treatment effects, Biometrika, 96, 187-199. https://doi.org/10.1093/biomet/asn055
- D'Amour, A., Ding, P., Feller, A., Lei, L., and Sekhon, J. (2017). Overlap in observational studies with high-dimensional covariates, arXiv preprint arXiv:1711.02582, 1-31.
- Dawid, A. P. (2000). Causal inference without counterfactuals, Journal of the American Statistical Association, 95, 407-424. https://doi.org/10.1080/01621459.2000.10474210
- Fan, J., Imai, K., Liu, H., Ning, Y., and Yang, X. (2016). Improving covariate balancing propensity score: a doubly robust and efficient approach (Technical Report), Princeton University, Princeton.
- Farrell, M. H. (2015). Robust inference on average treatment effects with possibly more covariates than observations. Journal of Econometrics, 189, 1-23. https://doi.org/10.1016/j.jeconom.2015.06.017
- Fong, C., Ratkovic, M., and Imai, K. (2018). CBPS: Covariate Balancing Propensity Score. R package version 0.19. https://CRAN.R-project.org/package=CBPS
- Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2011). MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software, 42, 1-28.
- Huh, M. (2014). Applied Data Analytics, Freedom Academy, Seoul.
- Imai, K. and Ratkovic, M. (2014). Covariate balancing propensity score, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 243-263. https://doi.org/10.1111/rssb.12027
- Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review, Review of Economics and Statistics, 86, 4-29. https://doi.org/10.1162/003465304323023651
- Imbens, G. W. and Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences, Cambridge University Press, Cambridge.
- Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22, 523-539. https://doi.org/10.1214/07-STS227
- Kim, M. (2018). Causal Inference in Statistics: A Primer, Kyowoo Book, Seoul.
- Kunzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. (2017). Meta-learners for estimating heterogeneous treatment effects using machine learning, arXiv preprint arXiv: 1706.03461, 1-39.
- Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study, Statistics in Medicine, 23, 2937-2960. https://doi.org/10.1002/sim.1903
- Nie, X. and Wager, S. (2017). Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint arXiv: 1712.04912, 1-43.
- Ning, Y. and Liu, H. (2017). A general theory of hypothesis tests and confidence regions for sparse high dimensional models, The Annals of Statistics, 45, 158-195. https://doi.org/10.1214/16-AOS1448
- Ning, Y., Peng, S., and Imai, K. (2017). High dimensional propensity score estimation via covariate balancing (Technical Report), Cornell University, 1-47.
- Pearl, J. (2009a). Causal inference in statistics: an overview, Statistics Surveys, 3, 96-146. https://doi.org/10.1214/09-SS057
- Pearl, J. (2009b). Causality, Cambridge University Press, Cambridge.
- Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal Inference in Statistics: A Primer, Wiley.
- Ponomareva, M. and Powell, J. (2010). Irregular identification, support conditions, and inverse weight estimation, Econometrica, 78, 2021-2042. https://doi.org/10.3982/ECTA7372
- Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules, The Annals of Statistics, 39, 1180-1210. https://doi.org/10.1214/10-AOS864
- Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association, 89, 846-866. https://doi.org/10.1080/01621459.1994.10476818
- Robinson, P. M. (1988). Root-n-consistent semiparametric regression, Econometrica, 56, 931. https://doi.org/10.2307/1912705
- Rosenbaum, P. (2017). Observation and Experiment: An Introduction to Causal Inference. Harvard University Press.
- Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score, Journal of the American Statistical Association, 79, 516-524. https://doi.org/10.1080/01621459.1984.10478078
- Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33-38. https://doi.org/10.2307/2683903
- Rubin, D. B. (2005). Causal inference using potential outcomes, Journal of the American Statistical Association, 100, 322-331. https://doi.org/10.1198/016214504000001880
- Stuart, E. A. (2010). Matching methods for causal inference: a review and a look forward, Statistical Science, 25, 1-21. https://doi.org/10.1214/09-STS313
- Van De Geer, S., Buhlmann, P., Ritov, Y., and Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42, 1166-1202. https://doi.org/10.1214/14-AOS1221
- van der Laan, M. J. and Rose, S. (2011). Targeted Learning, Springer Series in Statistics, Springer New York.
- van der Laan, M. J. and Rose, S. (2018). Targeted Learning in Data Science, Springer Series in Statistics, Springer International Publishing, Cham.
- Varian, H. R. (2016). Causal inference in economics and marketing. In Proceedings of the National Academy of Sciences, 113, 7310-7315. https://doi.org/10.1073/pnas.1510479113
- Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests, Journal of the American Statistical Association, 113, 1228-1242. https://doi.org/10.1080/01621459.2017.1319839
- Yang, S. and Ding, P. (2018). Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores. Biometrika, (March), 1-7.
- Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. (2012). Estimating optimal treatment regimes from a classification perspective, Stat, 1, 103-114. https://doi.org/10.1002/sta.411
- Zhao, Q. (2019). Covariate balancing propensity score by tailored loss functions. The Annals of Statistics, 47(2):965-993. https://doi.org/10.1214/18-AOS1698
- Zhao, Q. and Percival, D. (2017). Entropy balancing is doubly robust. Journal of Causal Inference, 5(1):1-21.
- Zhao, Q., Small, D. S., and Ertefaie, A. (2017). Selective inference for effect modification via the lasso. arXiv preprint arXiv: 1705.08020, 1-21.
- Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning, Journal of the American Statistical Association, 107, 1106-1118. https://doi.org/10.1080/01621459.2012.695674