DOI QR코드

DOI QR Code

불확실한 순궤환 비선형 계통에 대한 스위칭 미분기를 이용한 상태궤환 백스테핑 제어기

State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonlinear Systems Using Switching Differentiator

  • Park, Jang-Hyun (Dept. of Electrical and Control Engineering, Mokpo National University)
  • 투고 : 2019.06.05
  • 심사 : 2019.06.27
  • 발행 : 2019.06.30

초록

불확실한 순궤환 비선형 계통에 대한 스위칭 미분기 기반의 새로운 백스테핑 제어기를 제안한다. 제안된 제어기에서는 점근적 추종 특성을 갖는 스위칭 미분기를 사용하여 백스테핑 제어기의 매 설계 단계마다 가상 제어항이 직접 근사된다. 그 결과 제어식이 매우 단순화되고 계통에 내재된 파라미터 및 구조적 불확실성과 외란이 존재함에도 불구하고 계통의 출력이 원하는 출력을 점근적으로 추종함을 증명한다. 또한 신경망이나 퍼지시스템 같은 계통의 구조적인 불확실성에 적응적으로 실시간 보상하기 위한 범용 근사기가 불필요하다. 모의실험을 통해서 제안된 제어기의 성능과 간결함을 보인다.

A novel switching differentiator-based backstepping controller for uncertain pure-feedback nonlinear systems is proposed. Using asymptotically convergent switching differentiator, time-derivatives of the virtual controls are directly estimated in every backstepping design steps. As a result, the control law has an extremely simple form and asymptotical stability of the tracking error is guaranteed regardless of parametric or unstructured uncertainties and unmatched disturbances in the considered system. It is required no universal approximators such as neural networks or fuzzy logic systems that are adaptively tuned online to cope with system uncertainties. Simulation results show the simplicity and performance of the proposed controller.

키워드

JGGJB@_2019_v23n2_716_f0001.png 이미지

Fig. 1. Ouput tracking performance (a) y(t) and yd(t) (b) control input u 그림 1. 출력 추종 성능 (a) y 와 yd (b) 제어입력 u

JGGJB@_2019_v23n2_716_f0002.png 이미지

Fig. 2. Trajectories of the states of SD in (19). 그림 2. 식 (19)의 SD의 출력 변수들

JGGJB@_2019_v23n2_716_f0003.png 이미지

Fig. 3. Trajectories of the states of SD and w in (20). 그림 3. 식 (20)의 SD의 상태 변수들과 w 의 궤적

참고문헌

  1. J.-H. Park, S.-H. Kim and C.-J. Moon, "Adaptive neural control for strict-feedback nonlinear systems without backstepping," IEEE Trans. Neural Networks, vol.20, no.7, pp.1204-1209, 2009. DOI: 10.1109/TNN.2009.2020982
  2. J. Na, X. Ren, D. Zheng, "Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer," IEEE Trans. Neural Networks and Learning Systems, vol.24, no.3, pp.370-382, 2013. DOI: 10.1109/TNNLS.2012.2225845
  3. Q. Shen, T. Zhang, and C.-C. Lim, "Novel neural control for a class of uncertain pure-feedback systems," IEEE Trans. Neural Networks and Learning Systems, vol.86, no.5, pp.912-922, 2014. DOI: 10.1109/TNNLS.2013.2280728
  4. H. Wang, B. Chen, C. Lin, Y. Sun, "Observer-based adaptive neural control for a class of nonlinear pure-feedback systems," Neurocomputing, vol.171, pp.1517-1523, 2016. DOI: 10.1016/j.neucom.2015.07.103
  5. S. S. Ge, C. Wang, "Adaptive nn control of uncertain nonlinear purefeedback systems," Automatica, vol.38, pp.671-682, 2002. DOI: 10.1016/S0005-1098(01)00254-0
  6. Q. Zhao, Y. Lin, "Adaptive dynamic surface control for pure-feedback systems," Int. J. Robust and Nonlinear Control, vol.22, pp.1647-1660, 2016. DOI: 10.1109/TSMC.2017.2675540
  7. G. Sun, et. al., "Robust adaptive neural control of uncertain purefeedback nonlinear systems," Int. J. Control, vol.86, no.5, pp.912-922, 2013. DOI: 10.1080/00207179.2013.765039
  8. T. Zhang, X. Shi, Q. Zhu, Y. Yang, "Adaptive neural tracking control of pure-feedback nonlinear systems with unknown gain signs and unmodeled dynamics," Neurocomputing, vol.121, pp.290-297, 2013. DOI: 10.1016/j.neucom.2013.04.023
  9. Z. Chen, et. al., "Adaptive neural control of mimo nonlinear systems with a block-trangular pure-feedback control structure," IEEE Trans. Neural Networks and Learning Systems, vol.25, no.11, pp.2017-2029, 2014. DOI: 10.1109/TNNLS.2014.2302856.
  10. G.Sun, D. Wang, Z. Peng, "Adaptive control based on single neural network approximation for non-linear pure-feedback sustems," IET Control Theory and Application, vol.6, no.15, pp.2387-2396, 2012. DOI: 10.1049/iet-cta.2011.0538
  11. D. Wang, "Neural network-based adaptive dynamic surface control of uncertain nonlinear pure-feedback systems," Int. J. Robust and Nonlinear Control, vol. 21, pp. 527-541, 2011. DOI: 10.1002/rnc.1608
  12. T.-P. Zhang, Q. Zhu, and Y.-Q. Yang, "Adaptive neural control of nonaffine pure-feedback non-linear systems with input nonlinearity and perturbed uncertainties," Int. J. Systems Science, vol.43, no.4, pp.691-706, 2012. DOI: 10.1080/00207721.2010.519060
  13. S. Tong, Y. Li, P. Shi, "Observer-based adaptive fuzzy backstepping output feedback control of uncertain mimo pure-feedback nonlinear systems," IEEE Trans. Fuzzy Systems, vol.20, no.4, pp.771-785, 2012. DOI: 10.1109/TFUZZ.2012.2183604
  14. Y. Li, S. Tong, T. Li, "Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems," IEEE Trans. Cybernetics, vol.45, no.1, pp.138-149, 2015. DOI: 10.1109/TCYB.2014.2333738
  15. J.-H. Park, S. Kim, T. Park, "Output-Feedback Adaptive Neural Controller for Uncertain Pure-Feedback Nonlinear Systems Using a High-Order Sliding Mode Observer," IEEE Trans. Nueral Networks and Learning Systems, vol.30, no.5, pp.1596-1601, 2019. DOI: 10.1109/TNNLS.2018.2861942
  16. J.-H. Park, S. Kim, T. Park, "Approximation-Free Output-Feedback Control of Uncertain Nonlinear Systems Using Higher-Order Sliding Mode Observer," J. Dynamic Sytems, Measurement, and Control, vol.140, no.12, pp.124-502, 2018. DOI: 10.1115/1.4040664
  17. J.-H. Park, S. Kim, T. Park, "Asymptotically convergent switching differentiator," Int. J. Adaptive Control and Signal Processing, vol.33, pp.557-566, 2019. DOI: 10.1002/acs.2969
  18. J. D. Hunter, "Matplotlib: A 2d graphics environment," Computing In Science & Engineering, vol.9, no.3, pp.90-95, 2007. DOI: 10.1109/MCSE.2007.55