
J. lnf. Commun. Converg. Eng. 17(2): 142-148, Jun. 2019 Regular paper

142

Received 01 November 2018, Revised 11 April 2019, Accepted 20 April 2019
*Corresponding Author Intiraporn Mulasastra (E-mail: int@ku.ac.thm, Tel: +66-89-1205088)
Department of Computer Engineering, Kasetsart University, Bangkok 10900, Thailand

https://doi.org/10.6109/jicce.2019.17.2.142 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

Android Application for Connecting Cycling Routes on Strava
Segments

Intiraporn Mulasastra* and Wichpong Kao-ian

Department of Computer Engineering, Kasetsart University, Bangkok 10900, Thailand

Abstract

Relatively few countries provide separate bicycle lanes for cyclists. Hence, tools for suggesting cycling routes are essential for a

safe and pleasant cycling experience. This study aims to develop a mobile application to build cycling routes based on user

preferences, specifically location, search radius, ride distance, and number of optimal routes. Our application calls the Strava

API to retrieve Strava cycling segments crowdsourced from the cycling community. Then, it creates a graph consisting of the

start and end points of these segments. Beginning from a user-specified location, the depth-first search algorithm (DFS) is

applied to find routes that conform to the user’s preferences. Next, a set of optimal routes is obtained by computing a trade-off

ratio for every discovered route. This ratio is calculated from the lengths of all segments and the lengths of all connecting paths.

The connected routes can be displayed on a map on an Android device or exported as a GPX file to a bike computer. Future work

must be performed to improve the design of the user interface and user experience.

Index Terms: Android application, Bike navigator, Depth-First Search, GPX, Strava segments

I. INTRODUCTION

A vibrant cycling culture is emerging in many countries,

including Thailand, for both general transportation and recre-

ation. However, according to research on cycling safety [1],

there is a lack of adequate bicycling infrastructure due to

limited public funding. However, fast mobile broadband con-

nections and inexpensive rates have made access to mobile

mapping applications affordable [2]. Hence, a cycling trip

planner on mobile phones can alleviate the problem by rec-

ommending optimal routes for cyclists.

Google Maps APIs have been used to implement web-

based mapping services in a wide range of applications [3].

However, information on cycling routes provided by Google

Maps is only available in a handful countries and areas [4].

Unlike Google Maps, the Strava API provides cycling route

information crowdsourced from cyclists in many countries

and areas. Strava users can record and track cycling activi-

ties via the Global Positioning System (GPS) [5, 6], then

share their datasets and vote on their favorite routes. These

crowdsourced routes are typically safer than alternative

routes [1].

However, the routes recommended by Strava are not

always satisfactory to the cycling community due to being

short or disconnected, especially in areas where there are

only a few suggested routes. This study presents the devel-

opment of a mobile application for creating optimal cycling

routes based on user preferences, specifically location,

search radius, ride distance, and number of routes. Applying

the depth-first search (DFS) algorithm, our application will

select riding segments from Strava and connect them to cre-

ate a set of possible routes according to user preferences.

To find a set of optimal routes, we calculate a trade-off

ratio for all of the discovered routes based on the lengths of

https://orcid.org/0000-0002-6016-5881
https://orcid.org/0000-0002-0169-4214

Android Application for Connecting Cycling Routes on Strava Segments

143 http://jicce.org

all segments and the lengths of all connecting paths. The

results can be displayed on a map on any Android device,

and can also be exported as a GPX file to a bike computer.

We discuss related work, the proposed system, and present

the discussion and conclusions in the following sections.

II. RELATED WORK

This section describes related work that we use to imple-

ment our system. First, we explain the GPS exchange for-

mat. Then, we introduce the method for requesting GPS data

from a server as well as the DFS algorithm.

A. GPS Exchange Format

GPS data consist of waypoints, tracks, and routes. A GPX

file is an XML data format for the interchange of GPS data

between applications and Web services on the Internet [7-9].

GPX files contain a description of their contents, allowing

anyone to create a program that can read the data within [8].

Fig. 1 shows sample descriptions of GPS data, and explana-

tions are shown in Table 1.

B. Requesting GPS Data from a Server

1) HTTP Request

An HTTP request message from a client to a server

includes the method to be applied to the resource, the identi-

fier of the resource, and the protocol version in use [10]. The

Request-Line begins with a method token, followed by the

Request-URI and the protocol version, and ends with Car-

riage Return and Line Feed (CRLF). The Method token indi-

cates the method to be applied to the resource identified by

the Request-URI, e.g., GET, POST, and CONNECT.

2) JavaScript Object Notation (JSON)

JSON is text used for exchanging data between a browser

and a server. Any JavaScript object can be converted into

JSON and sent to a server. In addition, any JSON received

from a server can be converted into JavaScript objects.

JavaScript has a built-in function, JSON.parse(), to convert

a string, written in JSON format, into native JavaScript

objects. We can convert a JavaScript object into a string with

JSON.stringify() [11].

3) Strava Explore Segments

Strava provides cycling route segments created by Strava

cyclists who have previously traveled along those routes.

Fig. 2 shows an example of Strava route segments [12].

Strava provides APIs for retrieving and exporting route

segments as GPX files. An “exploreSegments” command

returns the top 10 segments matching a specified query [13].

A sample command is shown below, and a sample of a com-

mand response is shown in Fig. 3.

Fig. 1. GPS Exchange Format [6].

Table 1. GPS data

GPS Data Description

Waypoint
An individual waypoint consists of the GPS coordinates

of a point and other information (e.g., timestamp).

Track
An ordered list of points describing a path.

Tracks are a record of where a person has been.

Route
An ordered list of route points leading to a destination.

A route is a suggestion for where to go in the future.

Source: Wikipedia [9]. Fig. 2. Strava route segments [12].

J. lnf. Commun. Converg. Eng. 17(2): 142-148, Jun. 2019

https://doi.org/10.6109/jicce.2019.17.2.142 144

apiInstance.exploreSegments (bounds, activityType,

minCat, maxCat)

The four parameters are defined as:

bounds = [SW corner latitude, SW corner longitude,

NE corner latitude, NE corner longitude],

activityType = running or riding,

minCat = the minimum climbing category, and

maxcat = the maximum climbing category.

4) Encoded Polyline Algorithm

Google Maps applications define the concept of a polyline

as a list of points, where line segments are drawn between

consecutive points [14]. Polyline encoding is a compression

algorithm for converting a series of coordinates (latitude and

longitude points) into a single string for data interchange in

text format [15]. This algorithm is particularly useful when

there are many waypoints because the URL is significantly

shorter when using an encoded polyline. This is beneficial

because URLs are limited to 8192 characters for all web ser-

vices [16]. Strava uses the Google encoded polyline algorithm

format to encode the latitude and longitude coordinates of

points belonging to segments returned by Strava API requests.

C. Depth-First Search Algorithm

In a graph, DFS “explores edges out of the most recently

discovered vertex that still has unexplored edges leaving it”

[17]. After exploring all of the edges, it backtracks to

explore edges radiating from the vertices from which it orig-

inated [17]. As shown in Fig. 4, a recursive DFS algorithm

explores a graph G by starting from a point v by processing

v and then recursively traveling to all adjacent points [18].

III. Our Proposed System

We develop a mobile application for creating cycling

routes based on user preferences, namely location, search

radius, number of optimal routes, and riding distance. Our

application is an Android application written in Java using

Android Studio. We use an Android smartphone to test our

program and a bike computer (Garmin Edge 510) to test the

exporting of data.

The Strava API is called to find the most popular riding

segments in the location chosen by the user, which may be

unconnected. Our application connects these segments to

create suitable routes by applying the DFS algorithm, as

explained in Section II, and a trade-off ratio. A suitable

cycling route recommended by our system in GPX format,

which can be shown on a map on any Android device.

This section presents our overall system (Fig. 5), which

consists of three major tasks: acquiring route segments from

Strava datasets, connecting segments and finding a set of

optimal routes, and exporting cycling routes in GPX format.

The following figure presents these tasks.

A. Acquiring Route Segments from Strava

The two main classes that we use to acquire route seg-

ments from Strava are the GetLocation and JSON Task

Fig. 4. Depth-first search algorithm [18].

Fig. 3. Sample response to an exploreSegments command [13].

Fig. 5. Our overall system.

Android Application for Connecting Cycling Routes on Strava Segments

145 http://jicce.org

classes. Our system obtains a location on Google Maps (for

Android) from a user and then uses the GetLocation class to

obtain the GPS location [19]. Then, the JSON Task.execute

command is invoked to execute the segment Explore com-

mand from the Strava API. The command returns the most

popular segment objects, each of which consists of the ID,

name, average grade, latitude, and longitude of the start and

end points of each segment (Fig. 3).

The Explore command returns a maximum of 10 segments

regardless of the size of the area specified. If the specified

area is large, 10 segments will be too few to find an optimal

route. Hence, if the user-specified area is larger than eight

square kilometers, we divide that area into four grids with

the user-specified location at the center (Fig. 6). Then, we

call the Explore command four times (once per grid square),

yielding a total of up to 40 segments. Fig. 7 shows pseudo-

code for the algorithm.

When acquiring Strava segments, we create a special seg-

ment graph G(V,E) for later use in finding all possible

cycling routes. V is a set of vertices consisting of a start

location (with latitude and longitude coordinates), as well as

a start and end point of all segments returned by Strava API

calls. The segment graph is created as described below.

G = (V, E)

V = {a user-specified location} ∪ W

W = a set of start points and end points of Strava segments

returned by the Acquiring Route Segments algorithm.

E = {(vi,vj) | f(vi,vj) = true and ∀vi ∈V, ∀vj∈V}

The function f returns true if vi is a start point and vj is an

end point of the same Strava segment. Additionally, we store

segment information for each edge.

B. Finding all Possible Cycling Routes

We apply the DFS algorithm to find all possible cycling

routes based on user preferences in our segment graph G,

which results from the Acquiring Route Segments algorithm

(Section A). In graph G, starting from a location p, we search

for the nearest segments within a user-specified radius

around the point p (Fig. 8).

When we arrive at a point p', we check if the total route

distance plus the distance from p to p' is less than the target

distance. If it is, we proceed to the other endpoint of the p'

segment and then recursively travel to all points adjacent to

p'. To calculate the straight-line distance between two geo-

locations over the Earth’s surface, we use the Haversine for-

mula [Chris Veness as cited in 4].

Fig. 9 presents our proposed algorithm, the Radius Search

algorithm, which is derived from the DFS algorithm. Before

the first call to RadiusSearch (p), we create an empty list

(a_route) to store a list of route segments and another empty

list (routes_list) to store a list of discovered routes.

Fig. 8. Sample route graphs.

Fig. 6. Grid with four squares to find Strava segments [20].

Fig. 7. Acquiring Route Segments algorithm.

J. lnf. Commun. Converg. Eng. 17(2): 142-148, Jun. 2019

https://doi.org/10.6109/jicce.2019.17.2.142 146

C. Finding the Optimal Routes

Our graph may have a maximum of 40 segments, each

treated as a single node. Moreover, we assume that there

exist connecting routes from each node to every other node.

Hence, our graph is a complete graph in which every pair of

distinct vertices is connected by an edge [18]. Given n

nodes, there is a maximum of n(n-1)/2 edges.

In the worst-case scenario, there are 820 edges and 41

nodes (40 segments plus a starting location). This scenario

occurs when a user specifies a search radius that covers the

entire area. Traversing the entire graph requires 861 steps

(41+820), resulting in a large number of calls to the Google

API to find the lengths of all of the connecting paths. How-

ever, Google limits the number of free API requests to only

1,000 per day. Thus, instead, we use the straight-line dis-

tance to calculate the length, as explained in Section B. To

find the optimal routes, we estimate the trade-off ratio for

every route in routes_list as follows:

. (1)

Then, we rank all routes by their ratios and select only the

top x optimal cycling routes (where x is specified by the

user). Next, we connect a pair of segments in the resulting

routes by calling the Google navigation API, the Directions

service, which usually returns only one fastest route if we

pass alternatives = false [20].

D. Displaying the Resulting Routes

As mentioned above, we can find optimal routes that con-

sist of two kinds of segments: Strava and Google. For each

route, we must integrate both the Strava segments and the

Google connecting routes before displaying them as a single

route on a map and exporting it to a bike computer. To

export the Strava segments, we use the Strava API (getRou-

teAsGPX), which requires the identifier of a route as a

parameter and returns a GPX file corresponding to the route

[21]. To draw polyline overlays on an Open Street Map, we

apply a Polyline class as follows [22]:

for each route in encodedRoutes

{ var coordinates =

 L.Polyline.fromEncoded(route).getLatLngs();

 L.polyline(coordinates, {color:'blue'}).addTo(map);

}.

However, Google Maps does not use the GPX file format.

Therefore, we must convert GPX files to KML files before

calling the Google API to display the routes [23].

IV. DISCUSSION AND CONCLUSIONS

Here, we have developed an application to enable cyclists

to find user-friendly cycling routes. Our app makes use of

available social media data in the sports sector from the

Strava website. The cycling route data suggested by the

cycling community are typically safer than other routes [1],

whereas existing cycling route planners (e.g., Google Maps)

have issues with finding routes in private areas and around

tourist attractions [3].

We wrote this application in Java using Android Studio to

allow it to be used on mobile phones. A discovered route can

be shown on a map on an Android device and exported as a

GPX file to a bike computer.

By calling the Strava API, our application can retrieve

popular route segments in a user-specified area. Then, it cre-

ates a graph consisting of a start and end points of those seg-

ments. We apply the DFS algorithm to find possible routes

in the graph based on user preferences, specifically the route

distance, search radius, number of optimal routes, and a

starting location.

We obtain a set of optimal routes by applying a trade-off

ratio to every discovered route. The calculation is based on

the lengths of all segments and the lengths of all connecting

paths. A given route may consist of unconnected parts,

which our application connects using Google navigation.

To improve the performance of our search algorithm, we

take into account user preferences. Instead of exhaustively

searching all the nodes in a segment graph, we only visit

Trade-off Ratio
length of all Strava segments

length of all connecting paths
---=

Fig. 9. Radius Search algorithm.

Android Application for Connecting Cycling Routes on Strava Segments

147 http://jicce.org

nodes within the search radius indicated by the user. Further-

more, we use the straight-line distance to calculate the dis-

tance between nodes and allow the user to specify the

number of optimal routes to display, reducing the number of

calls to the Google APIs.

Future work must perform usability analysis to improve

the design of the user interface and user experience (UI/UX).

In addition, user preferences on a cycling route (e.g., seg-

ment elevation) should be taken into account.

ACKNOWLEDGEMENTS

An earlier version of this work using a different algorithm

was presented at the International Conference on Conver-

gence Technology (ICCT 2018) in Tokyo with the title “Cre-

ating Cycle Routes on Strava Segments” [24]. The authors

would like to acknowledge all referenced researchers for

their contributions. We would also like to thank Assistant

Professor Chaiporn Jaikaew for his useful advice on export-

ing data to a bike computer.

REFERENCES

[1] M. Loidl and H. H. Hochmair, “Do online bicycle routing portals

adequately address prevalent safety concerns?,” Safety, vol. 4, no. 9,

pp. 1-13, 2018. DOI: 10.3390/safety4010009.

[2] M. Schmidt and P. Weiser, “Web mapping services: development

and trends,” in Online Maps with APIs and WebServices, Berlin,

Heidelberg: Springer, pp. 13-21, 2012. DOI: 10.1007/978-3-642-

27485-5_2.

[3] S. Hu and T. Dai, “Online map application development using

Google Maps API, SQL database, and ASP.NET,” International

Journal of Information and Communication Technology Research,

vol. 3, no. 3, pp. 102-110, 2013.

[4] A. Pinandito, A. P. Kharisma, and R. S. Perdana, “Framework design

for map-based navigation in Google Android platform,” Journal of

Telecommunication, vol. 10, no. 1-8, pp. 35-40 , 2018.

[5] Strava, en.wikipedia.org, 2017, [online] Available: https://en.wikipedia.

org/wiki/Strava.

[6] USAF, “Global positioning system standard positioning service

signal specification,” US Government, 1995.

[7] GPX: the GPS exchange format, 2017, [online] Available: http://

www.topografix.com/gpx.asp.

[8] The GPS exchange format, 2017, [online] Available: http://www.

topografix.com/gpx_for_users.asp.

[9] GPS exchange format, 2017, [online] Available: https://en.wikipedia.

org/wiki/GPS_Exchange_Format.

[10] HTTP/1.1: Request, 2017, [online] Available: https://www.w3.org/

Protocols/rfc2616/rfc2616-sec5.html#sec5.

[11] J. Lennon, “Introduction to JSON,” in Beginning CouchDB, New

York, NY: Apress, pp. 87-105, 2009. DOI: 10.1007/978-1-4302-

7236-6_6.

[12] C. Bell, Strava Segments, [online] Available: https://www.doogal.co.

uk/strava.php.

[13] Explore segments, Strava Developer, [online] Available: http://developers.

strava.com/docs/reference/#api-Segments-exploreSegments.

[14] Polyline, Google APIs for Android, 2017, [online] Available: https://

developers.google.com/android/reference/com/google/android/gms/

maps/model/Polyline.

[15] Encoded polyline algorithm format, Google Maps APIs, 2017,

[online] Available: https://developers.google.com/maps/documentation

/utilities/polylinealgorithm.

[16] Best practices using google maps APIs web services, Google Map

Platform, [online] Available: https://developers.google.com/maps/

documentation/roads/web-servise-best-practices.

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed., Cambridge, MA: MIT Press and McGraw-Hill,

2009.

[18] R. Lafore, Data Structures and Algorithms in Java, 2nd ed. Indiana:

Sams Publishing, 2002.

[19] Google direction library, 2017, [online] Available: http://www.akexorcist.

com/2015/12/google-direction-library-for-android-th.html

[20] Developer guide, Google Maps Platform, [online] Available: https://

developers.google.com/maps/documentation/directions/intro#Request

Parameters.

[21] Polyline, [online] Available: https://docs.eegeo.com/eegeo.js/v0.1.

680/docs/leaflet/L.Polyline/.

[22] M. Needham, Leaflet: Mapping Strava runs/polylines on Open Street

Map, [online] Available: https://markhneedham.com/blog/2017/04/

29/leaflet-strava-polylines-osm/.

[23] KML and GeoRSS layers, Google Maps Platform, [online] Available:

https://developers.google.com/maps/documentation/javascript/kmllayer.

[24] W. Kao-Ian and I. Mulasastra, “Creating cycle routes on Strava

segments”, in Proceeding of the 2nd International Conference on

Cultural Technology, Tokyo, Japan, pp. 143-146, 2018.

Fig. 10. Our application shown on a mobile phone [24].

J. lnf. Commun. Converg. Eng. 17(2): 142-148, Jun. 2019

https://doi.org/10.6109/jicce.2019.17.2.142 148

Intiraporn Mulasastra
Assistant Professor, Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900,

Thailand

Education:

2016 | Ph.D. in Management of Technology, Asian Institute of Technology, Thailand.

1990 | MS in Computer Science, University of Maryland Graduate School, USA.

Research Interest: Data quality, Data analytics, e-Government, Convergence Technology

Wichpong Kao-ian
A systems engineer at Kasikorn Business-Technology Group, Bangkok, Thailand.

Education:

2016 | Bachelor of Engineering in Computer Engineering, Faculty of Engineering,

Kasetsart University, Bangkok 10900, Thailand

Research Interest: Artificial Intelligence, Data analysis, Cloud computing

