DOI QR코드

DOI QR Code

Standard Terminology System Referenced by 3D Human Body Model

  • Choi, Byung-Kwan (Department of Neurosurgery, Pusan National University Hospital) ;
  • Lim, Ji-Hye (Department of Healthcare Management, Youngsan University)
  • Received : 2019.03.05
  • Accepted : 2019.04.11
  • Published : 2019.06.30

Abstract

In this study, a system to increase the expressiveness of existing standard terminology using three-dimensional (3D) data is designed. We analyze the existing medical terminology system by searching the reference literature and perform an expert group focus survey. A human body image is generated using a 3D modeling tool. Then, the anatomical position of the human body is mapped to the 3D coordinates' identification (ID) and metadata. We define the term to represent the 3D human body position in a total of 12 categories, including semantic terminology entity and semantic disorder. The Blender and 3ds Max programs are used to create the 3D model from medical imaging data. The generated 3D human body model is expressed by the ID of the coordinate type (x, y, and z axes) based on the anatomical position and mapped to the semantic entity including the meaning. We propose a system of standard terminology enabling integration and utilization of the 3D human body model, coordinates (ID), and metadata. In the future, through cooperation with the Electronic Health Record system, we will contribute to clinical research to generate higher-quality big data.

Keywords

E1ICAW_2019_v17n2_91_f0001.png 이미지

Fig. 1. Study process.

E1ICAW_2019_v17n2_91_f0002.png 이미지

Fig. 2. Process of 3D image creation using Blender.

E1ICAW_2019_v17n2_91_f0003.png 이미지

Fig. 3. Process of 3D modeling tool using.

E1ICAW_2019_v17n2_91_f0004.png 이미지

Fig. 4. Process of adding an ID to a 3D human body model.

Table 1. Attributes and code examples of each terminology

E1ICAW_2019_v17n2_91_t0001.png 이미지

Table 2. ISO standard documents related to 3D human body terminology

E1ICAW_2019_v17n2_91_t0002.png 이미지

Table 3. Categories of 3D human body model terminology system

E1ICAW_2019_v17n2_91_t0003.png 이미지

References

  1. S. Garde, P. Knaup, E. Hovenga, and S. Heard, "Towards semantic interoperability for electronic health records," Methods of Information in Medicine, vol. 46, pp. 332-343, 2007. DOI: 10.1160/ME5001.
  2. S. Y. Kim, H. H. Kim, I. K. Lee, H. S. Kim, and H. Cho, "Proposed algorithm with standard terminologies (SNOMED and CPT) for automated generation of medical bills for laboratory tests," Healthcare Informatics Research, vol. 16, pp. 185-190, 2010. DOI: 10.4258/HIR.2010.16.3.185.
  3. Institute of Medicine (US) Committee on Quality of Health Care in America, "Crossing the quality chasm: A new health system for the 21st centry," National Academies Press, 2001. DOI: 10.1056/NEJM200108303450917.
  4. D. W. Bates, R. S. Evans, H. Murff, P. D. Stetson, L. Pizziferri, and G. Hripcsak, "Detecting adverse events using information technology," Journal of the American Medical Informatics Association, vol. 10, pp. 115-128, 2003. DOI: 10.1197/JAMIA.M1074.
  5. C. J. McDonald, "The barriers to electronic medical record systems and how to overcome them," Journal of the American Medical Informatics Association, vol. 4, pp. 213-221, 1997. DOI: 10.1136/JAMIA.1997.0040213.
  6. S. H. Park, B. K. Kang, J. E. Lee, S. W. Chun, K. Jang, Y. H. Kim, M. A. Jeong, Y. Kim, K. Kang, N. K. Lee, D. Choi, and H. J. Kim, "Design and fabrication of a thin-walled free-form scaffold on the basis of medical image data and a 3D printed template: Its potential use in bile duct regeneration," ACS Applied Materials & Interfaces, vol. 9, pp. 12290-12298, 2017. DOI: 10.1021/ACSAMI.7b00849.
  7. T. M. Bucking, E. R. Hill, J. L. Robertson, E. Maneas, A. A. Plumb, and D. I. Nikitichev, "From medical imaging data to 3D printed anatomical models," PLoS One, vol. 12, p. e0178540, 2017. DOI: 10.1371/JOURNAL.PONE.0178540.
  8. W. H. Choi and J. Cho, "Evolving clinical cancer radiotherapy: concerns regarding normal tissue protection and quality assurance," Journal of Korean Medical Science, vol. 31, suppl. 1, pp. S75-S87, 2016. DOI: 10.3346/JKMS.2016.31.S1.S75.
  9. W. C. McGaghie, S. B. Issenberg, E. R. Petrusa, and R. J. Scalese, "A critical review of simulation-based medical education research: 2003-2009," Medical Education, vol. 44, pp. 50-63, 2010. DOI: 10.1111/J.1365-2923.2009.03547.X.
  10. Y. Kim, H. Kim, and Y. O. Kim, "Virtual reality and augmented reality in plastic surgery: A review," Archives Plastic Surgery, vol. 44, pp. 179-187, 2017. DOI: 10.5999/APS.2017.44.3.179.
  11. A. Bernardo, "Virtual reality and simulation in neurosurgical training," World Neurosurgery, vol. 106, pp. 1015-1029, 2017. DOI: 10.1016/J.WNEU.2017.06.140.
  12. W. S. Khor, B. Baker, K. Amin, A. Chan, K. Patel, and J. Wong, "Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls," Annals Translational Medicine, vol. 4, p. 454, 2016. DOI: 10.21037/ATM.2016.12.23.
  13. J. Millar, "The need for a global language - SNOMED CT introduction," Studies in Health Technology and Informatics, vol. 225, pp. 683-685, 2016. DOI: 10.3233/978-1-61499-658-3-683.
  14. A. Agrawal, "Evaluating lexical similarity and modeling discrepancies in the procedure hierarchy of SNOMED CT," BMC Medical Informatics and Decision Making, vol. 18, p. 88, 2018. DOI: 10.1186/S12911-018-0673-Z.
  15. O. Bodenreider, R. Cornet, and D. J. Vreeman, "Recent developments in clinical terminologies - SNOMED CT, LOINC, and RxNorm," Yearbook Medical Informatics, vol. 27, pp. 129-139, 2018. DOI: 10.1055/S-0038-1667077.
  16. C. Uchegbu and X. Jing, "The potential adoption benefits and challenges of LOINC codes in a laboratory department: a case study," Health Information Science and Systems, vol. 5, p. 6, 2017. DOI: 10.1007/S13755-017-0027-8.
  17. C. J. McDonald, S. M. Huff, J. G. Suico, G. Hill, D. Leavelle, R. Aller, A. Forrey, K. Mercer, G. DeMoor, J. Hook, W. Williams, J. Case, and P. Maloney, "LOINC, a universal standard for identifying laboratory observations: a 5-year update," Clinical Chemistry, vol. 49, pp. 624-633, 2003. DOI: 10.1373/49.4.624.
  18. J. M. Rodrigues, D. Robinson, V. Della Mea, J. Campbell, A. Rector, S. Schulz, H. Brear, B. Ustun, K. Spackman, C. G. Chute, J. Millar, H. Solbrig, and K. Brand Persson, "Semantic Alignment between ICD-11 and SNOMED CT," Studies in Health Technology and Informatics, vol. 216, pp. 790-794, 2015. DOI: 10.3233/978-1-61499-564-7-790.
  19. J. M. Rodrigues, S. Schulz, A. Rector, K. Spackman, B. Ustun, C. G. Chute, V. Della Mea, J. Millar, and K. B. Persson, "Sharing ontology between ICD 11 and SNOMED CT will enable seamless re-use and semantic interoperability," Studies in Health Technology and Informatics, vol. 192, pp. 343-346, 2013. DOI: 10.3233/978-1-61499-289-9-343.
  20. T. Tudorache, S. Falconer, C. Nyulas, M. A. Storey, T. B. Ustun, and M. A. Musen, "Supporting the collaborative authoring of ICD-11 with WebProtege," AMIA Annual Symposium Proceedings, vol. 2010, pp. 802-806, 2010.
  21. D. T. Marc, J. Beattie, V. Herasevich, L. Gatewood, and R. Zhang, "Assessing metadata quality of a federally sponsored health data repository," AMIA Annual Symposium Proceedings, vol. 2016, pp. 864-873, 2016.
  22. M. N. Zozus and J. Bonner, "Towards data value-level metadata for clinical studies," Studies in Health Technology and Informatics, vol. 234, pp. 418-423, 2017. DOI: 10.3233/978-1-61499-742-9-418.
  23. G. Wade and S. T. Rosenbloom, "Experiences mapping a legacy interface terminology to SNOMED CT," BMC Medical Informatics and Decision Making, vol. 8, suppl. 1, p. S3, 2008. DOI: 10.1186/1472-6947-8-S1-S3.
  24. M. G. Masteghin and M. O. Orlandi, "A gas sensor based on a single SnO Micro-Disk," Sensors (Basel), vol. 18, no. 10, 2018. DOI: 10.3390/s18103229.

Cited by

  1. 클라우드 기반 인체측정 데이터 모니터링 시스템 vol.24, pp.9, 2020, https://doi.org/10.6109/jkiice.2020.24.9.1209
  2. Study on the Categorical Structure Standardization for Representation of 3D Human Body Position System vol.18, pp.4, 2019, https://doi.org/10.6109/jicce.2020.18.4.260