DOI QR코드

DOI QR Code

Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances

전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과

  • Kim, Kue-Ho (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Bae, Ju-Won (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kuen (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김규호 (서울과학기술대학교 신소재공학과) ;
  • 배주원 (서울과학기술대학교 신소재공학과) ;
  • 이태근 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2019.05.10
  • Accepted : 2019.06.18
  • Published : 2019.06.27

Abstract

In the present study, vanadium oxide($V_2O_5$) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the $V_2O_5$ films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the $V_2O_5$ films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency($29.8cm^2/C$). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the $V_2O_5$ films. Therefore, $V_2O_5$ films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.

Keywords

References

  1. M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi and P. S. Lee, Nanoscale, 6, 4572 (2014). https://doi.org/10.1039/c3nr06890k
  2. H. Li, G. Shi, H. Wang, Q. Zhang and Y. Li, J. Mater. Chem. A, 2, 11305 (2014). https://doi.org/10.1039/C4TA01803F
  3. G. J. Stec, A. Lauchner, Y. Cui, P. Nordlander and N. J. Halas, ACS Nano, 11, 3254 (2017). https://doi.org/10.1021/acsnano.7b00364
  4. B.-R. Koo, K.-H. Kim and H.-J. Ahn, Appl. Surf. Sci., 453, 238 (2018). https://doi.org/10.1016/j.apsusc.2018.05.094
  5. X. Chang, R. Hu, S. Sun, J. Liu, Y. Lei, T. Liu, L. Dong and Y. Yin, Appl. Surf. Sci., 441, 105 (2018). https://doi.org/10.1016/j.apsusc.2018.02.003
  6. S. Liu and X. Qu, Appl. Surf. Sci., 412, 189 (2017). https://doi.org/10.1016/j.apsusc.2017.03.244
  7. K.-H. Kim, B.-R. Koo and H.-J. Ahn, Korean J. Mater. Res., 28, 411 (2018). https://doi.org/10.3740/MRSK.2018.28.7.411
  8. B.-R. Koo, K.-H. Kim and H.-J. Ahn, Nanoscale, 11, 3318 (2019). https://doi.org/10.1039/C8NR08793H
  9. Z. Tong, S. Liu, X. Li, J. Zhao and Y. Li, Nanoscale, 3, 261 (2018). https://doi.org/10.1039/C8NH00016F
  10. M. Rakibuddin and H. Kim, Ceram. Int., 44, 16615 (2018). https://doi.org/10.1016/j.ceramint.2018.06.088
  11. M. M. Margoni, S. Mathuri, K. Ramamurthi, R. R. Babu, V. Ganesh and K. Sethuraman, Appl. Surf. Sci., 449, 193 (2018). https://doi.org/10.1016/j.apsusc.2018.01.288
  12. K.-C. Cheng, F.-R. Chen and J.-J. Kai, Sol. Energy Mater. Sol. Cells, 90, 1156 (2006). https://doi.org/10.1016/j.solmat.2005.07.006
  13. R. Narayanan, A. Dewan and D. Chakraborty, RSC Adv., 8, 8596 (2018). https://doi.org/10.1039/C7RA13357J
  14. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu and S. E. Skrabalak, Dalton Trans., 44, 17883 (2015). https://doi.org/10.1039/C5DT02964C
  15. Z. Tong, X. Zhang, H. Lv, N, Li, H. Qu, J. Zhao, Y. Li and X.-Y. Liu, Adv. Mater. Interfaces, 2, 1500230 (2015). https://doi.org/10.1002/admi.201500230
  16. H. Kamal, A. A. Akl and K. Abdel-Hady, Phys. B, 349, 192 (2004). https://doi.org/10.1016/j.physb.2004.03.088
  17. B.-R. Koo, J.-W. Bae and H.-J. Ahn, Ceram. Int., 45, 12325 (2019). https://doi.org/10.1016/j.ceramint.2019.03.148
  18. K.-H. Kim, B.-R. Koo and H.-J. Ahn, Ceram. Int., 44, 9408 (2018). https://doi.org/10.1016/j.ceramint.2018.02.157
  19. C.-Y. Kim, A. A. Escuadro, P. C. Stair and M. J. Bedzyk, J. Phys. Chem. C, 111, 1874 (2007). https://doi.org/10.1021/jp067862s
  20. J.-W. Bae, B.-R. Koo, T.-K. Lee and H.-J. Ahn, J. Korean Powder Metall. Inst., 25, 1 (2018). https://doi.org/10.4150/KPMI.2018.25.1.1
  21. B.-R. Koo and H.-J. Ahn, Nanoscale, 9, 17788 (2017). https://doi.org/10.1039/C7NR06796H
  22. W. He, Y. Liu and Z. Wan, C. Jia, RSC Adv., 6, 68997 (2016). https://doi.org/10.1039/C6RA08809K
  23. K. Wang, P. Zeng, J. Zhai and Q. Liu, Electrochem. Commun., 26, 5 (2013). https://doi.org/10.1016/j.elecom.2012.09.037
  24. C.-K. Wang, C.-K. Lin, C.-L. Wu, S. Brahma, S.-C. Wang and J.-L. Huang, Ceram. Int., 39, 4293 (2013). https://doi.org/10.1016/j.ceramint.2012.11.010