DOI QR코드

DOI QR Code

Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite

유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가

  • Kwon, Yu Jeong (School of Materials Science and Engineering, Kyungpook National University) ;
  • Hyeon, Dong Yeol (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, Kwi-Il (School of Materials Science and Engineering, Kyungpook National University)
  • 권유정 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 현동열 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2019.05.23
  • Accepted : 2019.06.14
  • Published : 2019.06.27

Abstract

A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.

Keywords

References

  1. S. Kim, J. H. Son, S. H. Lee, B. K. You, K.-I. Park, H. K. Lee, M. Byun and K. J. Lee, Adv. Mater., 26, 7480 (2014). https://doi.org/10.1002/adma.201402472
  2. S. H. Lee, C. K. Jeong, G.-T. Hwang and K. J. Lee, Nano Energy, 14, 111 (2015). https://doi.org/10.1016/j.nanoen.2014.12.003
  3. D. H. Kim, H. G. Yoo, S. M. Hong, B. Jang, D. Y. Park, D. J. Joe, J.-H. Kim and K. J. Lee, Adv. Mater., 28, 8371 (2016). https://doi.org/10.1002/adma.201602339
  4. J. H. Park, H. E. Lee, C. K. Jeong, D. H. Kim, S. K. Hong, K.-I. Park and K. J. Lee, Nano Energy, 56, 531 (2019). https://doi.org/10.1016/j.nanoen.2018.11.077
  5. D. Kim, D. Kim, H. Lee, Y. R. Jeong, S.-J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, J. Kim and J. S. Ha, Adv. Mater., 28, 748 (2016). https://doi.org/10.1002/adma.201504335
  6. G.-T Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Park, C. K. Jeong, K.-I. Park, J.-J. Choi, D. K. Kim, J. Ryu and K. J. Lee, Adv. Energy Mater., 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237
  7. Z. L. Wang, Adv. Mater., 24, 280 (2012). https://doi.org/10.1002/adma.201102958
  8. H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, C. G. Hu, Z. K. Wu, Y. Liu, C. P. Wong, Y. Bando and Z. L. Wang, Nano Energy, 2, 693 (2013) https://doi.org/10.1016/j.nanoen.2013.08.004
  9. S. P. Beeby, M. J. Tudor and N. M. White, Meas. Sci. Technol., 17, R175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
  10. T. V Galchev, J. McCullagh, R. L. Peterson and K. Najafi, J. Micromech. Microeng., 21, 104005 (2011). https://doi.org/10.1088/0960-1317/21/10/104005
  11. Z. L. Wang and J. Song, Science, 312, 242 (2006) https://doi.org/10.1126/science.1124005
  12. Z. L. Wang and W. Wu, Angew. Chem. Int., 51, 11700 (2012). https://doi.org/10.1002/anie.201201656
  13. U. Khan, R. Hinchet, H. Ryu and S.-W. Kim, APL Mater., 5, 73803 (2017). https://doi.org/10.1063/1.4979954
  14. J. Lim, H. Jung, C. Baek, G.-T. Hwang, J. Ryu, D. Yoon, K.-I. Park and J. H. Kim, Nano Energy, 41, 337 (2017). https://doi.org/10.1016/j.nanoen.2017.09.046
  15. Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad and M. C. McAlpine, Nano Lett., 10, 524 (2010). https://doi.org/10.1021/nl903377u
  16. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S. J. L. Kang, Z. L. Wang and K. J. Lee, Nano Lett., 10, 4939 (2010). https://doi.org/10.1021/nl102959k
  17. Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit and M. C. McAlpine, Nano Lett., 11, 1331 (2011). https://doi.org/10.1021/nl104412b
  18. K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang and K. J. Lee, Adv. Mater., 26, 2514 (2014). https://doi.org/10.1002/adma.201305659
  19. J. H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou and Z. L. Wang, ACS Nano, 5, 10041 (2011). https://doi.org/10.1021/nn2039033
  20. K.-I. Park, C. K. Jeong, J. Ryu, G.-T. Hwang and K. J. Lee, Adv. Energy Mater., 3, 1539 (2013). https://doi.org/10.1002/aenm.201300458
  21. A. Koka and H. A. Sodano, Adv. Energy Mater., 4, 1301660 (2014). https://doi.org/10.1002/aenm.201301660
  22. D. Y. Hyeon and K.-I. Park, Adv. Mater. Technol., doi.org/10.1002/admt.201900228.
  23. S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z.-H. Lin, G. Ardila, L. Montes, M. Mouis and Z. L. Wang, Adv. Funct. Mater., 24, 1163 (2014). https://doi.org/10.1002/adfm.201301971
  24. J. A. Munoz-Tabares, K. Bejtka, A. Lamberti, N. Garino, S. Bianco, M. Quaglio, C. F. Pirri and A. Chiodoni, Nanoscale, 8, 6866 (2016). https://doi.org/10.1039/C5NR07283B
  25. K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee, Adv. Mater., 24, 2999 (2012). https://doi.org/10.1002/adma.201200105
  26. C. Baek, J. H. Yun, J. E. Wang, C. K. Jeong, K. J. Lee, K.-I. Park and D. K. Kim, Nanoscale, 8, 17632 (2016). https://doi.org/10.1039/C6NR05784E
  27. C. K. Jeong, C. Baek, A. I. Kingon, K.-I. Park and S.-H. Kim, Small, 14, 1704026 (2018).
  28. S.-H. Shin, Y.-H. Kim, M. H. Lee, J.-Y. Jung and J. Nah, ACS Nano, 8, 2766 (2014). https://doi.org/10.1021/nn406481k
  29. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao and Y. Zhang, Nano Energy, 11, 719 (2015). https://doi.org/10.1016/j.nanoen.2014.11.061
  30. S. S. Won, M. Sheldon, N. Mostovych, J. Kwak, B.-S. Chang, C. W. Ahn, A. I. Kingon, I. W. Kim and S.-H. Kim, Appl. Phys. Lett., 107, 202901 (2015). https://doi.org/10.1063/1.4935557
  31. D. Y. Hyeon and K.-I. Park, J. Kor. Powder Metal. Institute, 26, 119 (2019). https://doi.org/10.4150/KPMI.2019.26.2.119
  32. M.-C. Garcia-Gutierrez, A. Linares, I. Martin-Fabiani, J. J. Hernandez, M. Soccio, D. R. Rueda, T. A. Ezquerra and M. Reynolds, Nanoscale, 5, 6007 (2013).
  33. P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M.-J. Pan, S. R. Marder, J. Li, J. P. Calame and J. W. Perry, ACS Nano, 3, 2581 (2009). https://doi.org/10.1021/nn9006412
  34. C. K. Jeong, S. B. Cho, J. H. Han, D. Y. Park, S. Yang, K.-I. Park, J. Ryu, H. Sohn, Y.-C. Chung and K. J. Lee, Nano Res., 10, 437 (2017). https://doi.org/10.1007/s12274-016-1304-6