DOI QR코드

DOI QR Code

Study on the Experimental Aging Estimation Technique for HTPB based Solid Propellant Considering Post Curing Effect

후경화를 고려한 HTPB 고체 추진제의 실험적 노화평가 기법 연구

  • Jung, Gyoo Dong (The 4th R&D Institute, Agency for Defense Development) ;
  • Park, Jae Beom (The 4th R&D Institute, Agency for Defense Development) ;
  • Kim, Shinhoe (The 4th R&D Institute, Agency for Defense Development)
  • Received : 2019.02.21
  • Accepted : 2019.04.23
  • Published : 2019.06.01

Abstract

Post curing effects are estimated by specimen tests. Propellant specimen accelerated aging tests are performed when post curing is estimated to be complete and the coefficients of Arrhenius aging equations are acquired. Simulated motors with cylindrical grain are designed and fabricated to confirm the application. Accelerated aging tests are conducted, and aged properties are measured and estimated for the inner bore, center and bond parts of the grain. The measured aging ratios of the modulus are compared with the ones predicted by the equations. As the results, the accelerated aging equations predict well the propellant aging trends; however, some differences are observed at the bond part. Therefore, the specimen extraction part must be carefully chosen to suit the test purpose when a rocket motor grain is used for the aging test.

HTPB 고체 추진제 기계적 물성의 후경화 효과에 대하여 시편 시험을 통하여 평가하였다. 후경화 반응 완료 후 시편 가속노화 시험을 실시하여 Arrhenius 식의 계수를 획득하였다. 확인을 위하여 원통형 모사 충전체를 설계, 제작하여 가속노화 시험을 수행하였으며, 시험 후 추진제 표면 부위, 중앙 부위, 접착 부위에 대하여 시편을 채취하여 노화 물성을 평가하였다. 측정된 결과에 대하여, 획득된 가속노화 식으로 예측하여 비교하였다. 그 결과 JANNAF 시편 시험을 통한 가속노화 식은 추진제 재료의 노화를 잘 예측하였으나 접착 부위에서는 실제 측정 결과와 차이를 나타내었다. 따라서 실기형 추진기관에서 노화 시료를 채취하는 경우 시험 목적에 부합하도록 시편 채취 부위를 선정해야 한다.

Keywords

References

  1. Adel, W.M., “Service life prediction of AP/Al/HTPB solid rocket propellant with consideration of softening aging behavior,” Chinese Journal of Aeronautics, Vol. 32, No. 2, pp. 361-368, 2019. https://doi.org/10.1016/j.cja.2018.08.003
  2. Ruderman, G.A., "Health Management Issues and Strategy for Air Force Missiles," AFRL-ADA440133, 2005.
  3. Myers, G.E., "Chemical Structural Aging Effects." AFRPL-AD-A000538, 1974.
  4. Yang, X., Sun, C., Zhang, J. and Xu, J., "Mechanical Properties Experimental Investigation of HTPB Propellant after Thermal Accelerated Aging," 5th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation, Busan, South Korea, AIP Proc. 1834-030013, Apr. 2017.
  5. Layton, L.H., "Chemical Structural Aging Effects," Thiokol-AD-A002836, 1974.
  6. Chemical Propulsion Agency(CPIA), "Solid Propellant mechanical behavior manual," Chapter 4.3, 1988.
  7. Chemical Propulsion Agency(CPIA), "Principles of Solid Propellant Development," Chapter 7, 1987.
  8. Gottlieb, L. and Bar, S., “Migration of Plasticizer between Bonded Propellant Interfaces,” Propellants, Explosives, Pyrotechnics, Vol. 28, No. 1, pp. 12-17, 2003. https://doi.org/10.1002/prep.200390000
  9. Park, J.H., Ryu, N.S., Park, J. B. and Jung, G.D., "Natural Aging Properties Analysis of HTPB Propellant," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 1, pp. 9-14, 2019.