DOI QR코드

DOI QR Code

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin (School of Basic Medical Sciences, Xi'an Jiaotong University) ;
  • Qu, Yuliang (Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University) ;
  • Yang, Shaoqi (Department of Digestive Disease, General Hospital of Ningxia Medical University) ;
  • Zhao, Ya'e (School of Basic Medical Sciences, Xi'an Jiaotong University) ;
  • Xu, Guangxian (Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University)
  • Received : 2018.11.15
  • Accepted : 2019.05.21
  • Published : 2019.06.28

Abstract

Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

Keywords

References

  1. Korb VC, Chuturgoon AA, Moodley D. 2016. Mycobacterium tuberculosis: manipulator of protective immunity. Int. J. Mol. Sci. 17: 131. https://doi.org/10.3390/ijms17030131
  2. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, et al. 2016. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17: 677-686. https://doi.org/10.1038/ni.3434
  3. Nathan C, Barry CE. 2015. Tuberculosis drug development: immunology at the table. Immunol. Rev. 264: 308-318. https://doi.org/10.1111/imr.12275
  4. Ren NA, Gao G, Sun YUE, Zhang L, Wang H, Hua W, et al. 2015. MicroRNA signatures from multidrug-resistant Mycobacterium tuberculosis. Mol. Med. Report. 12: 6561-6567. https://doi.org/10.3892/mmr.2015.4262
  5. Shao Y, Yang D, Xu W, Lu W, Song H, Dai Y, et al. 2011. Epidemiology of anti-tuberculosis drug resistance in a chinese population: current situation and challenges ahead. BMC Public Health. 11: 110-110. https://doi.org/10.1186/1471-2458-11-110
  6. Guirado E, Schlesinger LS, Kaplan G. 2013. Macrophages in tuberculosis: friend or foe. Semin. Immunopathol. 35: 563-583. https://doi.org/10.1007/s00281-013-0388-2
  7. Chandra P, Ghanwat S, Matta SK, Yadav SS, Mehta M, Siddiqui Z, et al. 2015. Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci. Rep. 5: 16320. https://doi.org/10.1038/srep16320
  8. Min Liang ZH, Kaori Sakamoto, Cao XCaG. 2017. Mycobacteria and autophagy: many questions and few answers. Curr. Issues Mol. Biol. 21: 63-71
  9. Dunlop EA, Tee AR. 2014. mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 36: 121-129. https://doi.org/10.1016/j.semcdb.2014.08.006
  10. Kim KH, Lee M-S. 2014. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev. Endocr. Metab. Disord. 15: 11-20. https://doi.org/10.1007/s11154-013-9272-6
  11. Pan W-R, Chen Y-LS, Hsu H-C, Chen W-J. 2015. Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy. Mol. Cell Biochem. 400: 77-86. https://doi.org/10.1007/s11010-014-2264-3
  12. Mortensen M, Ferguson DJP, Edelmann M, Kessler B, Morten KJ, Komatsu M, et al. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA 107: 832-837. https://doi.org/10.1073/pnas.0913170107
  13. Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, et al. 2016. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 113: E6172-E6181. https://doi.org/10.1073/pnas.1608255113
  14. Ameres SL, Zamore PD. 2013. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14: 475-488. https://doi.org/10.1038/nrm3611
  15. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. 2015. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6: 8474-8490. https://doi.org/10.18632/oncotarget.3523
  16. Romano G, Kwong LN. 2017. Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy. Cancer Metastasis Rev. 37: 45-53. https://doi.org/10.1007/s10555-017-9716-7
  17. Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, et al. 2015. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int. J. Cancer. 137: 1679-1690. https://doi.org/10.1002/ijc.29544
  18. Zhang L, Cheng R, Huang Y. 2017. MiR-30a inhibits BECN1-mediated autophagy in diabetic cataract. Oncotarget 8: 77360-77368. https://doi.org/10.18632/oncotarget.20483
  19. Qi Y, Cui L, Ge Y, Shi Z, Zhao K, Guo X, et al. 2012. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect. Dis. 12: 384-384. https://doi.org/10.1186/1471-2334-12-384
  20. Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J, et al. 2013. MiR-20a triggers metastasis of gallbladder carcinoma. J. Hepatol. 59: 518-527. https://doi.org/10.1016/j.jhep.2013.04.034
  21. Kim E-A, Kim S-W, Nam J, Sung E-G, Song I-H, Kim J-Y, et al. 2016. Inhibition of c-FLIP(L) expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 7: 31832-31846. https://doi.org/10.18632/oncotarget.7149
  22. Guo L, Zhao J, Qu Y, Yin R, Gao Q, Ding S, et al. 2016. MicroRNA-20a inhibits autophagic process by targeting ATG7 and ATG16L1 and favors mycobacterial survival in macrophage cells. Front Cell Infect. Microbiol. 6: 134.
  23. Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV. 2003. Inhibition of IFN-${\gamma}$-induced class II transactivator expression by a 19-kDa lipoprotein from mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171: 175-184. https://doi.org/10.4049/jimmunol.171.1.175
  24. Moy RH, Cherry S. 2013. Antimicrobial autophagy: a conserved innate immune response in Drosophila. J. Innate. Immun. 5: 444-455. https://doi.org/10.1159/000350326
  25. Jo EK. 2013. Autophagy as an innate defense against mycobacteria. Pathog. Dis. 67: 108-118. https://doi.org/10.1111/2049-632X.12023
  26. Korkmaz G, Tekirdag KA, Ozturk DG, Kosar A, Sezerman OU, Gozuacik D. 2013. MIR376A is a regulator of starvationinduced autophagy. PLoS One 8: e82556. https://doi.org/10.1371/journal.pone.0082556
  27. Tekirdag KA, Korkmaz G, Ozturk DG, Agami R, Gozuacik D. 2013. MIR181A regulates starvation- and rapamycin-induced autophagy through targeting of ATG5. Autophagy 9: 374-385. https://doi.org/10.4161/auto.23117
  28. Kim Y, Lee J, Ryu H. 2015. Modulation of autophagy by miRNAs. BMB Rep. 48: 371-372. https://doi.org/10.5483/BMBRep.2015.48.7.121
  29. Abd-El-Fattah AA, Sadik NAH, Shaker OG, Aboulftouh ML. 2013. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys. 67: 875-884. https://doi.org/10.1007/s12013-013-9575-y
  30. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. 2007. DAVID Bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35: W169-175. https://doi.org/10.1093/nar/gkm415
  31. Wang Y, Nishimura MT, Zhao T, Tang D. 2011. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 68: 74-87. https://doi.org/10.1111/j.1365-313X.2011.04669.x
  32. Pyo J-O, Yoo S-M, Ahn H-H, Nah J, Hong S-H, Kam T-I, et al. 2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4: 2300. https://doi.org/10.1038/ncomms3300
  33. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, et al. 2008. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell. 19: 4651-4659. https://doi.org/10.1091/mbc.e08-03-0312
  34. Shin D-M, Jeon B-Y, Lee H-M, Jin HS, Yuk J-M, Song C-H, et al. 2010. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 6: e1001230. https://doi.org/10.1371/journal.ppat.1001230

Cited by

  1. March of Mycobacterium : miRNAs intercept host cell CD40 signalling vol.9, pp.10, 2019, https://doi.org/10.1002/cti2.1179
  2. Involvement of ABC-transporters and acyltransferase 1 in intracellular cholesterol-mediated autophagy in bovine alveolar macrophages in response to the Bacillus Calmette-Guerin (BCG) infection vol.21, 2019, https://doi.org/10.1186/s12865-020-00356-x