DOI QR코드

DOI QR Code

Production of Indole-3-acetate in Corynebacterium glutamicum by Heterologous Expression of the Indole-3-pyruvate Pathway Genes

  • Kim, Yu-mi (Biotech R&D Center, Amicogen Co.) ;
  • Kwak, Mi-hyang (School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Kim, Hee-sook (School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Lee, Jin-ho (School of Food Biotechnology and Nutrition, Kyungsung University)
  • Received : 2019.01.29
  • Accepted : 2019.03.08
  • Published : 2019.06.28

Abstract

Biosynthesis of indole-3-acetate (IAA) from L-tryptophan via indole-3-pyruvate pathway requires three enzymes including aminotransferase, indole-3-pyruvate decarboxylase, and indole-3-acetate dehydrogenase. To establish a bio-based production of IAA, the aspC, ipdC, and iad1 from Escherichia coli, Enterobacter cloacae, and Ustilago maydis, respectively, were expressed under control of the tac, ilvC, and sod promoters in C. glutamicum. Cells harboring ipdC produced tryptophol, indicating that the ipdC product is functional in this host. Analyses of SDS-PAGE and enzyme activity revealed that genes encoding AspC and Iad1 were efficiently expressed from the sod promoter, and their enzyme activities were 5.8 and 168.5 nmol/min/mg-protein, respectively. The final resulting strain expressing aspC, ipdC, and iad1 produced 2.3 g/l and 7.3 g/l of IAA from 10 g/l L-tryptophan, respectively, in flask cultures and a 5-L bioreactor.

Keywords

References

  1. Romasi EF, Lee J. 2013. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1. J. Microbiol. Biotechnol. 23: 1726-1736. https://doi.org/10.4014/jmb.1308.08082
  2. Sergeeva E, Liaimer A, Bergman B. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238. https://doi.org/10.1007/s00425-002-0749-x
  3. Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  4. Spaepen S, Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb Perspect. Biol. 3: 1-13.
  5. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9: 339-355. https://doi.org/10.1111/j.1364-3703.2008.00470.x
  6. Chandra S, Askari K, Kumari M. 2018. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J. Genet. Eng. Biotechnol. 16: 581-586. https://doi.org/10.1016/j.jgeb.2018.09.001
  7. Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, et al. 2010. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res. Microbiol. 161: 219-226. https://doi.org/10.1016/j.resmic.2010.01.005
  8. Ozdal M, Ozdal OG, Sezen A, Algur OF, Kurbanoglu EB. 2017. Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis. 3 Biotech. 7: 23.
  9. Malhotra M, Srivastava, S. 2006. Targeted engineering of Azosprillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Can. J. Microbiol. 52: 1078-1084. https://doi.org/10.1139/w06-071
  10. Becker J, Rohles CM, Wittmann C. 2018. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab. Eng. 50: 122-141. https://doi.org/10.1016/j.ymben.2018.07.008
  11. Lee JH, Wendisch VF. 2017. Production of amino acids - Genetic and metabolic engineering approaches. Bioresour. Technol. 245: 1575-1587. https://doi.org/10.1016/j.biortech.2017.05.065
  12. Ikeda M, Katsumata R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. J. Appl. Environ. Microbiol. 65: 2497-2502. https://doi.org/10.1128/AEM.65.6.2497-2502.1999
  13. Lee JH, Wendisch VF. 2017. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211-221. https://doi.org/10.1016/j.jbiotec.2016.11.016
  14. Basse CW, Lottspeich F, Steglich W, Kahmann R. 1996. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur. J. Biochem. 242: 648-656. https://doi.org/10.1111/j.1432-1033.1996.0648r.x
  15. Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, et al. 1986. The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Comparison of the primary structures of the aspartate aminotranasferase and aromatic aminotransferase of E. coli with those of the pig aspartate aminotransferase isoenzymes. Biochem. J. 234: 593-604. https://doi.org/10.1042/bj2340593
  16. Koga J, Adachi T, Hidaka H. 1991. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 226: 10-16. https://doi.org/10.1007/BF00273581
  17. Lee, JH. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79. https://doi.org/10.4014/jmb.1310.10032
  18. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
  19. Arndt A, Eikmanns BJ. 2007. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol. 189: 7408-7416. https://doi.org/10.1128/JB.00791-07
  20. Ikeda M. 2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626. https://doi.org/10.1007/s00253-005-0252-y
  21. Beyeler M, Keel C, Michaux P, Haas D. 1999. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol. Ecol. 28: 225-233. https://doi.org/10.1111/j.1574-6941.1999.tb00578.x

Cited by

  1. 미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구 vol.30, pp.10, 2019, https://doi.org/10.5352/jls.2020.30.10.919
  2. 대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산 vol.48, pp.4, 2019, https://doi.org/10.48022/mbl.2010.10008