DOI QR코드

DOI QR Code

Tannic acid-induced apoptosis in FaDu hypopharyngeal squamous cell carcinoma

  • Ta, Loan Thi (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Nguyen, Trang Thi Kieu (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University) ;
  • Yoo, Hoon (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University)
  • 투고 : 2019.05.07
  • 심사 : 2019.06.06
  • 발행 : 2019.06.30

초록

Tannic acid (TA) is a water-soluble polyphenol compound found in various herbal plants. We investigated the chemopreventive effects of TA on FaDu hypopharyngeal squamous carcinoma cells. In an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, TA showed dose-dependent cytotoxicity with a half maximal inhibitory concentration (IC50) of 50 ?M. Cell cycle analysis and immunofluorescence imaging demonstrated that under low-dose ($25{\mu}M$) treatment, FaDu cells were arrested in G2/M phase, and as the dose of TA was increased, apoptosis was induced with the increase of cell population at sub-G1 phase. The expressions of various cyclins, including cyclin D1 and cyclin-dependent kinases (CDK-1 and CDK-2), were down-regulated at low doses of TA, whereas apoptotic effectors such as cleaved caspase 3, cleaved caspase 7, and poly (ADP-ribose) polymerase (PARP) were expressed in a dose-dependent manner in Western blotting. In addition, TA-induced apoptosis of FaDu cells might be mediated by the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway, with the upregulation of p-AKT/p-PKB (phosphorylated protein kinase B) and p-ERK. Overall, our data support the hypothesis that TA is a potential candidate agent for the treatment of hypopharyngeal cancer.

키워드

참고문헌

  1. Sanderson RJ, Ironside JA. Squamous cell carcinomas of the head and neck. BMJ 2002;325:822-7. doi: 10.1136/bmj.325.7368.822.
  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108. doi: 10.3322/caac.21262.
  3. Majchrzak E, Szybiak B, Wegner A, Pienkowski P, Pazdrowski J, Luczewski L, Sowka M, Golusinski P, Malicki J, Golusinski W. Oral cavity and oropharyngeal squamous cell carcinoma in young adults: a review of the literature. Radiol Oncol 2014;48:1-10. doi: 10.2478/raon-2013-0057.
  4. Negri E, La Vecchia C, Franceschi S, Tavani A. Attributable risk for oral cancer in northern Italy. Cancer Epidemiol Biomarkers Prev 1993;2:189-93.
  5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 2004;83:1-1438.
  6. Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol 2015;33:3305-13. doi: 10.1200/JCO.2015.62.0963.
  7. Pignon JP, le Maitre A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92:4-14. doi: 10.1016/j.radonc.2009.04.014.
  8. Suh Y, Amelio I, Guerrero Urbano T, Tavassoli M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis 2014;5:e1018. doi: 10.1038/cddis.2013.548.
  9. Wycliffe ND, Grover RS, Kim PD, Simental A Jr. Hypopharyngeal cancer. Top Magn Reson Imaging 2007;18:243-58. doi:10.1097/RMR.0b013e3181570c3f.
  10. Frutos P, Hervas G, Giraldez FJ, Mantecon AR. Review. Tannins and ruminant nutrition. Span J Agric Res 2004;2:191-202. doi: 10.5424/sjar/2004022-73.
  11. Erdelyi K, Kiss A, Bakondi E, Bai P, Szabo C, Gergely P, Erdodi F, Virag L. Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 2005;68:895-904. doi: 10.1124/mol.105.012518.
  12. Khan NS, Ahmad A, Hadi SM. Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 2000;125:177-89. doi: 10.1016/S0009-2797(00)00143-5.
  13. Hamiza OO, Rehman MU, Tahir M, Khan R, Khan AQ, Lateef A, Ali F, Sultana S. Amelioration of 1,2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac J Cancer Prev 2012;13:4393-402. doi: 10.7314/apjcp.2012.13.9.4393.
  14. Hayatsu H, Arimoto S, Negishi T. Dietary inhibitors of mutagenesis and carcinogenesis. Mutat Res 1988;202:429-46. doi: 10.1016/0027-5107(88)90204-7.
  15. Savelyev N, Baykuzina P, Dokudovskaya S, Lavrik O, Rubtsova M, Dontsova O. Comprehensive analysis of telomerase inhibition by gallotannin. Oncotarget 2018;9:18712-9. doi:10.18632/oncotarget.24642.
  16. Nagesh PKB, Hatami E, Chowdhury P, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers (Basel) 2018;10:68. doi: 10.3390/cancers10030068.
  17. Jordan LG, Booth BW. HER2+ breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I. J Biomed Mater Res A 2018;106:26-32. doi: 10.1002/jbm.a.36205.
  18. Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 2017;21:720-34. doi: 10.1111/jcmm.13015.
  19. Zhang J, Chen D, Han DM, Cheng YH, Dai C, Wu XJ, Che FY, Heng XY. Tannic acid mediated induction of apoptosis in human glioma Hs 683 cells. Oncol Lett 2018;15:6845-50. doi:10.3892/ol.2018.8197.
  20. Zielinska-Przyjemska M, Kaczmarek M, Krajka-Kuźniak V, Łuczak M, Baer-Dubowska W. The effect of resveratrol, its naturally occurring derivatives and tannic acid on the induction of cell cycle arrest and apoptosis in rat C6 and human T98G glioma cell lines. Toxicol In Vitro 2017;43:69-75. doi: 10.1016/j.tiv.2017.06.004.
  21. Darvin P, Baeg SJ, Joung YH, Sp N, Kang DY, Byun HJ, Park JU, Yang YM. Tannic acid inhibits the Jak2/STAT3 pathway and induces G1/S arrest and mitochondrial apoptosis in YD-38 gingival cancer cells. Int J Oncol 2015;47:1111-20. doi:10.3892/ijo.2015.3098.
  22. Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther 2002;1:226-31. doi: 10.4161/cbt.72.
  23. Mordret G. MAP kinase kinase: a node connecting multiple pathways. Biol Cell 1993;79:193-207. doi: 10.1016/0248-4900(93)90138-5.
  24. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015;35:600-4. doi: 10.3109/10799893.2015.1030412.
  25. Franke TF. PI3K/Akt: getting it right matters. Oncogene 2008;27:6473-88. doi: 10.1038/onc.2008.313.
  26. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007;12:487-502. doi: 10.1016/j.devcel.2007.03.020.
  27. Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci 2008;121(Pt 7):979-88. doi: 10.1242/jcs.009530.
  28. Chetram MA, Bethea DA, Odero-Marah VA, Don-Salu-Hewage AS, Jones KJ, Hinton CV. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem 2013;376:63-71. doi: 10.1007/s11010-012-1549-7.
  29. Schmidt M, Skaf J, Gavril G, Polednik C, Roller J, Kessler M, Holzgrabe U. The influence of Osmunda regalis root extract on head and neck cancer cell proliferation, invasion and gene expression. BMC Complement Altern Med 2017;17:518. doi:10.1186/s12906-017-2009-4.