DOI QR코드

DOI QR Code

스마트팜의 기술적 특성이 노력기대를 매개로 수용의도에 미치는 영향

The Effect of Technical Characteristics of Smart Farm on Acceptance Intention by Mediating Effect of Effort Expectation

  • 안문형 (호서대학교 벤처대학원 정보경영학과) ;
  • 허철무 (호서대학교 벤처대학원 정보경영학과)
  • Ahn, Mun Hyoung (Dept. of Management Information, Graduate School of Venture, Hoseo University) ;
  • Heo, Chul-Moo (Dept. of Management Information, Graduate School of Venture, Hoseo University)
  • 투고 : 2019.04.05
  • 심사 : 2019.06.20
  • 발행 : 2019.06.28

초록

본 연구는 스마트팜의 수용의도에 미치는 영향요인들을 살펴보고 이를 바탕으로 스마트팜 확산을 위한 제언을 하고자 하였다. 실제 농업에 종사하고 있는 농업인 대상으로 수집한 설문결과를 SPSS v22.0 및 Process Macro v3.0를 활용한 자료분석에 사용하였으며, 독립변수로는 스마트팜의 기술적 특성으로 가용성, 신뢰성, 경제성을 선정하여 종속변수인 수용의도에 미치는 영향을 분석하였고, 노력기대의 매개효과를 분석하였다. 연구결과, 기술적 특성 중 가용성과 경제성은 수용의도에 정(+)의 영향을 미치며, 신뢰성은 수용의도에 영향을 미치지 않는 것으로 나타났다. 또한, 가용성, 신뢰성, 경제성은 노력기대에 정(+)의 영향을 미치는 것으로 나타났다. 매개효과와 관련하여 노력기대는 스마트팜 기술적 특성인 가용성, 신뢰성, 경제성과 수용의도간의 관계를 매개하는 것으로 나타났다. 연구 결과는 스마트팜의 잠재적 수용자를 대상으로 한 정책수립의 방향성 모색, 실제 현장에서의 스마트팜 교육 및 컨설팅에서 활용할 수 있을 것으로 기대한다.

This study is to look at the influential factors associated with the acceptance intention of smart farm and suggest a proposal for spreading adoption of smart farms. The research questionnaire distributed to the farmers were used for the research analysis by statistical program SPSS v22.0 and Process macro v3.0. The technical characteristics of smart farm, which are availability, reliability and economic efficiency were selected as independent variables to analyze the influential factors on acceptance intention of smart farm and the mediating effect of effort expectation was observed. As a result, availability and economic efficiency have a positive(+) influence on acceptance intention and reliability have no influence on acceptance intention. And availability, reliability and economic efficiency have a positive(+) influence on effort expectation. Effort expectation mediates the relationship between the technical characteristics of smart farm and acceptance intention. The results of the study are expected to be utilized at the seeking direction of policy for potential adopters of smart farm, the training and consulting in actual field of smart farm.

키워드

DJTJBT_2019_v17n6_145_f0001.png 이미지

Fig. 1. Research Model

Table 1. Measurement tool

DJTJBT_2019_v17n6_145_t0001.png 이미지

Table 2. Demographic Characteristics of the Respondents

DJTJBT_2019_v17n6_145_t0002.png 이미지

Table 3. Factor Analysis

DJTJBT_2019_v17n6_145_t0003.png 이미지

Table 4. Reliability Analysis

DJTJBT_2019_v17n6_145_t0004.png 이미지

Table 5. Correlation Coefficient

DJTJBT_2019_v17n6_145_t0005.png 이미지

Table 6. Effect of technical characteristics on acceptance intention

DJTJBT_2019_v17n6_145_t0006.png 이미지

Table 7. Effect of technical characteristics on effort expectation

DJTJBT_2019_v17n6_145_t0007.png 이미지

Table 8. Effect of effort expectation on acceptance intention

DJTJBT_2019_v17n6_145_t0008.png 이미지

Table 9. Effect of availability on acceptance intention

DJTJBT_2019_v17n6_145_t0009.png 이미지

Table 10. Effect of reliability on acceptance intention

DJTJBT_2019_v17n6_145_t0010.png 이미지

Table 11. Effect of economic efficiency on acceptance intention

DJTJBT_2019_v17n6_145_t0011.png 이미지

참고문헌

  1. N. G. Yoon, J. S. Lee, G. S. Park & J. Y. Lee. (2017). Korea smart farm policy and technology development status. Rural Resources, 59(2), 19-27.
  2. J. Y. Yoon & B. H. Lee. (2017). Implementation strategy and development methods for smart farms in Gangwon Province. Journal of Agricultural, Life and Environmental Sciences, 29, 137-151.
  3. D. S. Suh & Y. J. Kim. (2016). A study on priority of policy for smart farming system using AHP approach. Journal of the Korea Academia-Industrial cooperation Society, 17(11), 348-354. https://doi.org/10.5762/KAIS.2016.17.11.348
  4. KREI. (2016). Analysis of smart farm status and success factors.
  5. J. S. Kim. (2016). A study on factors affecting the intention to accept blockchain technology. Doctoral dissertation. Soongsil University, Seoul.
  6. W. H. DeLone & E. R. Mclean. (2003). The DeLone and Mclean model of information systems success: a ten-year update. Jounal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
  7. S. H. Kim & G. A. Kim. (2011). An empirical study on the factors affecting the adoption of mobile cloud and the moderating effect of mobile trust. The e-Business Studies, 12(1), 281-310. https://doi.org/10.15719/geba.12.1.201103.281
  8. J. H. Ryu, H. Y. Moon & J. H. Choi. (2013). Analysis of influence factors on the intention to use personal cloud computing. Journal of Information Technology Services, 12(4), 319-335. https://doi.org/10.9716/KITS.2013.12.4.319
  9. G. I. Seong, B. W. Kim, H. G. Kim, M. H. Han & G. H. Park. (2015). Analyzing and countermeasure for smart livestock farming based on ICT. Ministry of Science, ICT and Future Planning.
  10. S. J. Oh. (2017). A Design of intelligent information system for greenhouse cultivation. Journal of Digital Convergence, 15(2), 183-190. https://doi.org/10.14400/JDC.2017.15.2.183
  11. M. Reid. & Levy, Y. (2008). Integrating trust and computer self-efficacy with TAM: An empirical assessment of customers' acceptance of banking information systems (BIS) in Jamaica. Journal of Internet Banking and Commerce, 13(3), 1-18.
  12. S. C. Park & S. J. Kwon. (2011). A study on factors affecting intention to switch for using cloud computing: A case of google docs. Journal of Information Technology Services, 10(3), 149-166. https://doi.org/10.9716/KITS.2011.10.3.149
  13. D. H. Kim, J. H. Lee & Y. P. Park. (2012). A study of factors affecting the adoption of cloud computing. Journal of Society for e-Business Studies, 17(1), 111-136. https://doi.org/10.7838/jsebs.2012.17.1.111
  14. G. G. Seo. (2013). Factor analysis of the cloud service adoption intension of Korean firms: Applying the TAM and VAM. Journal of Digital Convergence, 11(12), 155-160. https://doi.org/10.14400/JDPM.2013.11.12.155
  15. C. H. Cheong & S. H. Nam. (2014). Cloud computing acceptance at individual level based on extended UTAUT. Journal of Digital Convergence, 12(1), 287-294. https://doi.org/10.14400/JDPM.2014.12.1.287
  16. J. T. Kim & J. S. Han. (2017). Agricultural management innovation through the adoption of internet of things : Case of smart farm. Journal of Digital Convergence, 15(3), 65-75. https://doi.org/10.14400/JDC.2017.15.3.65
  17. A. Benlian & T. Hess. (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision Support Systems, 52(1), 232-246. https://doi.org/10.1016/j.dss.2011.07.007
  18. J. H. Lee & H. J. Cho. (2013). Smart learning adoption in the workplace: The HRD manager perspective. Entrue Journal of Information Technology, 12(3), 107-119.
  19. Oliveira, T., Thomas, M. & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497-510. https://doi.org/10.1016/j.im.2014.03.006
  20. V. Venkatesh, M. G. Morris, G. B. Davis. & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  21. D. H. Kim, I. T. Hwang & S. H. Lee. (2015). The relationship between adoption of innovation and diffusing intention for ICT convergency industry among farmers. Korean Society of Agricultural Extension, 22(1), 43-54.
  22. D. J. Park & D. R. Bae. (2008). Factors accepting KMS and the moderating role of resistance in public sector. The Journal of Information Systems, 17(2), 73-94. https://doi.org/10.5859/KAIS.2008.17.2.073
  23. S. T. Nam, S. Y. Shin & C. Y. Jin. (2014). A Meta-analysis and review of external factors based on the technology acceptance model : Focusing on the journals related to smart phone in Korea. Journal of Korea Institute of Information and Communication Engineering, 18(4), 848-854. https://doi.org/10.6109/jkiice.2014.18.4.848
  24. S. H. Jeon, N. R. Park & C. C. Lee. (2011). Study on the factors affecting the intention to adopt public cloud computing service. Entrue Journal of Information Technology, 10(2), 97-112.
  25. E. Y. Kim, J. H. Lee & D. U. Seo. (2013). A Study on the effect of organization's environment on acceptance intention for big data system. Journal of information technology applications & management, 20(4), 1-18. https://doi.org/10.21219/JITAM.2013.20.4.001
  26. W. S. Choi & S. B. Lee. (2013). Effects of the external variables of the RFID system for eco-friendly agricultural products on perceived value and behavioral intention: Applying an expanded TAM. The Korean Journal of Culinary Research, 19(2), 149-166.
  27. M. Alshehri, S. Drew, T. Alhussain & R. Alghamdi. (2012). The effects of website quality on adoption of e-government service: An empirical study applying UTAUT model using SEM. Australasian Conference On Information Systems.
  28. S. H. Lee, J. Y. Ha, D. H. Kim & H. R. Lee. (2016). A Study on the export big data technology acceptance of information agricultural products. Tne Korea Society of Management Information Systems, Spring conference, 179-186.