DOI QR코드

DOI QR Code

진동기반 하중 추정기법의 이론 및 암반 천공용 유압 브레이커 적용사례

The Theory of Load Estimation Method and Case Study of Hydraulic Breaker for Rock Drilling

  • 김대지 (한국생산기술연구원 건설기계부품그룹) ;
  • 조정우 (한국생산기술연구원 건설기계부품그룹) ;
  • 오주영 (한국생산기술연구원 건설기계부품그룹) ;
  • 정진태 (한양대학교 기계설계공학과) ;
  • 송창헌 (한국생산기술연구원 건설기계부품그룹)
  • Kim, Dae-ji (Construction Equipment R&D Group, Korea Institute of Industrial Technology) ;
  • Cho, Jung-Woo (Construction Equipment R&D Group, Korea Institute of Industrial Technology) ;
  • Oh, Joo-Young (Construction Equipment R&D Group, Korea Institute of Industrial Technology) ;
  • Chung, Jintai (Department of mechanical design engineering, Hanyang University) ;
  • Song, Changheon (Construction Equipment R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2019.04.29
  • 심사 : 2019.06.03
  • 발행 : 2019.06.30

초록

본 논문은 기계시스템의 하중추정 기법 및 적용사례 소개가 목적이다. 이를 위해 진동기반 하중추정 기법의 이론적 배경 및 하중정량화 절차를 구체적으로 설명하였다. 또한 충격하중 및 진동이 발생하는 천공장비에 적용하여 진동기반 하중추정 기법의 적용성과 한계점을 분석하고 이에 대한 대응책에 대해 논의하였다. 마지막으로, 하중추정 기술의 추가 연구의 필요성을 토의하고, 새로운 충격하중 측정기술 개발을 위한 방법론을 제안하였다.

This paper introduced a impact load estimation method by examining vibration transfer path analysis (TPA). The theoretical background and the load quantification procedure are explained, and a case study of hydraulic breaker is reported. We explained the merits and limitations of the load estimation method of TPA, and improvement method was suggested through case analyses of drilling equipment. The necessity of R&D of load-estimation technology was discussed. A new strategy for developing new techniques for impact load measurement was proposed.

키워드

OBGHBQ_2019_v29n3_135_f0001.png 이미지

Fig. 1. Schematic of transfer path analysis model; active subsystem generating force and acoustic loads, and a passive subsystem responding to these loads (Song et al. 2017)

OBGHBQ_2019_v29n3_135_f0002.png 이미지

Fig. 2. Process for quantifying transfer path analysis sources (Song et al., 2017)

OBGHBQ_2019_v29n3_135_f0003.png 이미지

Fig. 3. Schematic diagram of the procedure for load estimation method

OBGHBQ_2019_v29n3_135_f0004.png 이미지

Fig. 4. Schematic of the hydraulic breaker; (a) isometric view, (b) cross section A-A’ (Song et al., 2017)

OBGHBQ_2019_v29n3_135_f0005.png 이미지

Fig. 5. Installation positions of triaxial accelerometers, (Song et al., 2016)

OBGHBQ_2019_v29n3_135_f0006.png 이미지

Fig. 6. Mechanism of the hydraulic breaker and vibration test setup (Song et al., 2017)

OBGHBQ_2019_v29n3_135_f0007.png 이미지

Fig. 7. Measured vibration signal from the operating hydraulic breaker.(Song et al., 2017)

OBGHBQ_2019_v29n3_135_f0008.png 이미지

Fig. 8. Measured frequency response function by modal impact test (Song et al., 2016)

OBGHBQ_2019_v29n3_135_f0009.png 이미지

Fig. 9. Mode shapes and natural frequencies of the hydraulic breaker housing. (Song et al., 2017)

OBGHBQ_2019_v29n3_135_f0010.png 이미지

Fig. 10. Position of isolation pad in a hydraulic breaker (Song et al., 2016)

OBGHBQ_2019_v29n3_135_f0011.png 이미지

Fig. 11. Contribution of impact loads in the hydraulic breaker (Song et al., 2016)

OBGHBQ_2019_v29n3_135_f0012.png 이미지

Fig. 12. Breaker shock wave of impact energy strain (Song et al., 2017)

Table 1. Results of impact loads in the hydraulic breaker

OBGHBQ_2019_v29n3_135_t0001.png 이미지

Table 2. Results of impact energy measurement

OBGHBQ_2019_v29n3_135_t0002.png 이미지

참고문헌

  1. Baker, W. E., and Dove, R. C., 1962, Measurement of internal strain in a bar subjected to longitudinal impact, Experimental Mechanics, 2(2):307-311. https://doi.org/10.1007/BF02326198
  2. Christopher, J. S., Gareth, J. A., James, M. W., Paul, J. H., and Derek, F. A., 2011, On the response of ballistic soap to one-dimensional shock loading, International Journal of Impact Engineering, 38:981-988. https://doi.org/10.1016/j.ijimpeng.2011.07.003
  3. Ewins, D. J., 2000, Modal Testing: Theory, Practice and Application Second Edition, RESEARCH STUDIES PRESS LTD.
  4. Ficarella, A, Giuffrida, A., and Laforgia, D., 2006, Numerical investigations on the working cycle of a hydraulic breaker: off-design performance and influence of design parameters, International Journal of Fluid Power, 7:41-50.
  5. Ficarella, A, Giuffrida, A and Laforgia, D., 2007, Investigation on the impact energy of a hydraulic breaker, SAE Paper, 01-4229.
  6. Ficarella, A, Giuffrida, A, and Laforgia, D., 2008, The effects of distributor and striking mass on the performance of a hydraulic impact machine, SAE Paper, 01-2679.
  7. Gajdatsy, P., Janssens, K., Desmet, W., and Vander Auweraer, H., 2010, Application of the transmissibility concept in transfer path analysis, Mechanical Systems and Signal Processing, 24:1963-1976. https://doi.org/10.1016/j.ymssp.2010.05.008
  8. Hashiba, K., Fukui, K., Liang, Y. Z., Koizumi, M., and Matsuda, T., 2015, Force-penetration curves of a button bit generated during impact penetration into rock, International Journal of Impact Engineering, 85:45-56. https://doi.org/10.1016/j.ijimpeng.2015.06.007
  9. Hughes, J. E., Kim, Y, El-Korchi, T., and Cyganski, D., 2015, Radar-based impact load prediction for damage mitigation of infrastructure, Journal of Vibration and Control, first published on September 9:1-17.
  10. Hwang D. S., Hur D. J., and Hwang H. S., 2011, Understanding Algorithm of Time Domain Transfer Path Analysis, Proc. of the KSME Autumn Conference, 11:3173-3177.
  11. Kim, B. S., Kim, M. G., Byun, D. W., Lee, S. M. and Lee, S. H, 2006, A study on the structure improvement of bracket housing for structural noise and vibration reduction in hydraulic, Journal of the Korean Society for Precision Engineering, 23(11):108-115.
  12. Kim, S. J. and Lee, S. K., 2008, Prediction of interior noise by excitation force of the power train based on hybrid transfer path analysis, International Journal of Automotive Technology, 9(5):577-583. https://doi.org/10.1007/s12239-008-0068-8
  13. Knapp, J., Altmann, E., Niemann, J., and Werner, K. D., 1998, Measurement of shock events by means of strain gauges and accelerometers, Measurement 24:87-96. https://doi.org/10.1016/S0263-2241(98)00036-0
  14. Kwak, K. S. and Chang, H. W., 2008, Performance optimization of a fully hydraulic breaker using Taguchi method, Journal Drive and Control, 5:41-48.
  15. Giuffrida, A, and Laforgia, D., 2005, Modeling and Simulation of a Hydraulic Breaker, International Journal of Fluid Power, 6(2):47-56. https://doi.org/10.1080/14399776.2005.10781219
  16. Lee, S. H., Han, C. S. and Song, C. S., 2003, A study on the performance improvement of a high efficiency hydraulic breaker, J The Korean Soc Tribol Lubr Eng, 19(2):59-64.
  17. Oh, J. Y., Lee, G. H. and Song, C. S., 2011, A Study on the Analysis of Hydraulic Circuit of a Rockdrill Drifter, KSFC Spring Conference, 70-75.
  18. Park, G. B., Park, C. H., Park, Y. S. and Choi, D. H, 2011, Optimal design for minimizing weight of housing of hydraulic breaker, Transactions of the Korean Society of Mechanical Engineers-A, 35(2):207-212. https://doi.org/10.3795/KSME-A.2011.35.2.207
  19. Park, J. W., and Kim, H. E., 2006, Impact energy measurement of hydraulic breaker, Key Engineering Matrials, 3:1669-1672. https://doi.org/10.4028/www.scientific.net/KEM.326-328.1669
  20. SIEMENS, 2014a, Technical info issued: How to perform transfer path analysis, http://www.plm.automation.siemens.com/en_us/products/lms/testing/transfer-path-analysis.shtml#lightview-close.
  21. SIEMENS, 2014b, Technical info issued: What is transfer path analysis. http://www.plm.automation.siemens.com/en_us/products/lms/testing/transfer-path-analysis.shtml#lightview-close.
  22. Shin, D. Y. and Song, C. H., 2012, Performance Optimization of Down-the-Hole Hammer Using Taguchi Method, Transactions of the Korean Society of Mechanical Engineers-A , 36(1):109-116. https://doi.org/10.3795/KSME-A.2012.36.1.109
  23. Song, C. H., Kim, D. J, Chung, J., Lee, K. W., Kweon, S. S., and Kang, Y. K., 2017, Estimation of impact loads in a hydraulic breaker by transfer path analysis, Shock and Vibration, Vol. 2017:1-15, Article ID 8564381.
  24. Song, C. H., Kim D. J., Kweon, S. S., Shin, D. Y. and Kang, Y. K., 2016, Analysis of Impulse Loads in Hydraulic Breaker using Transfer Path Analysis (TPA) Method, Journal of Drive and Control, 13(1)1:72-77.
  25. Sundin, K. G., and Jonsson, M., 1985, A stiff and compact impact-force transducer based on strain measurement, Experimental Mechanics, 25(1):48-53. https://doi.org/10.1007/BF02329125
  26. Suzuki, S., 1971, Measured dynamic-load factors of cantilever beams, frame structures and rings subjected to impact loads, Experimental Mechanics, 11(2):76-81. https://doi.org/10.1007/BF02320624
  27. Van der seijs, M., Klerk, D., and Rixen, D., 2016, General framework for transfer path analysis: History, theory and classification of techniques, Mechanical Systems and Signal Processing, 68-69:217-244. https://doi.org/10.1016/j.ymssp.2015.08.004
  28. Xue, X., Ren, T., and Zhang, W., 2013, Analysis of fatigue damage character of soil under impact load. Journal of Vibration and Control, 19: 1728-1737. https://doi.org/10.1177/1077546312450732
  29. Zhang, J., Guo, S. L., Wu, Z. S., and Zhang, Q. Q., 2015, Structural identification and damage detection through long-gauge strain measurements, Engineering Structures, 99:173-183. https://doi.org/10.1016/j.engstruct.2015.04.024