Table 1. The features of Pseudomonas fluorescens Pf275 genome
참고문헌
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
- Couillerot O, Combes-Meynet E, Pothier J, Bellvert F, Challita E, Poirier M, Rohr R, Comte G, Moenne-Loccoz Y, and Prigent-Combaret C. 2011. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157, 1694-1705. https://doi.org/10.1099/mic.0.043943-0
- Couillerot O, Prigent-Combaret C, Caballero-Mellado J, and Moenne-Loccoz Y. 2009. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol. 48, 505-512. https://doi.org/10.1111/j.1472-765X.2009.02566.x
- Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, and Lemanceau P. 2012. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb. Ecol. 64, 725-737. https://doi.org/10.1007/s00248-012-0065-3
- Gliese N, Khodaverdi V, and Gorisch H. 2010. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa. Arch. Microbiol. 192, 1-14. https://doi.org/10.1007/s00203-009-0523-6
- Haas D and Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41, 117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
- Hernandez-Salmeron JE, Moreno-Hagelsieb G, and Santoyo G. 2017. Genome comparison of Pseudomonas fluorescens UM270 with related fluorescent strains unveils genes involved in rhizosphere competence and colonization. J. Genomics 5, 91-98. https://doi.org/10.7150/jgen.21588
- Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Muriel C, et al. 2013. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14, 54. https://doi.org/10.1186/1471-2164-14-54
- Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, et al. 2009. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10, R51. https://doi.org/10.1186/gb-2009-10-5-r51
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624. https://doi.org/10.1093/nar/gkw569
피인용 문헌
- High‐throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold vol.128, pp.1, 2019, https://doi.org/10.1111/jam.14475
- Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275 vol.36, pp.5, 2020, https://doi.org/10.5423/ppj.ft.08.2020.0149