DOI QR코드

DOI QR Code

Bacillus subtilis subsp. spizizenii의 sirohydrochlorin chelatase SirB의 코발트 복합체 구조

Cobalt complex structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subsp. spizizenii

  • 남미선 (강원대학교 의생명과학대학 의생명융합학부) ;
  • 송완석 (강원대학교 의생명과학대학 의생명융합학부) ;
  • 박순철 (강원대학교 의생명과학대학 의생명융합학부) ;
  • 윤성일 (강원대학교 의생명과학대학 의생명융합학부)
  • Nam, Mi Sun (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Song, Wan Seok (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Park, Sun Cheol (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Yoon, Sung-il (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
  • 투고 : 2019.04.22
  • 심사 : 2019.06.05
  • 발행 : 2019.06.30

초록

Chelatase는 tetrapyrrole에 2가 금속을 삽입하는 데 관여하는 효소로서 cobalamin, siroheme, heme, chlorophyll과 같은 금속-tetrapyrrole의 생합성에 필수적인 역할을 담당한다. SirB는 sirohydrochlorin(SHC) tetrapyrrole의 중앙부에 코발트나철을 삽입하여 코발트-SHC 또는 철-SHC를 형성하는 SHC chelatase이다. SirB의 금속 결합 기전 및 SHC 인식 기전을 구조적으로 이해하기 위해 Bacillus subtilis subsp. spizizenii에서 유래한 SirB(bssSirB)의 코발트 복합체 구조를 규명하였다. bssSirB는 N-말단 도메인(NTD)과 C-말단 도메인(CTD)으로 구성된 ${\alpha}/{\beta}$ 단량체 구조를 형성한다. bssSirB는 NTD와 CTD 사이에 서열 보존성이 높은 공동을 지니며 NTD의 histidine 잔기 2개를 이용하여 공동 상단에서 코발트 이온과 상호작용한다. 또한 구조 비교 분석 결과 bssSirB는 공동 내에 SHC 분자를 수용하는 것으로 판단된다. 이러한 구조적 발견에 기초하여 bssSirB의 공동은 SHC의 코발트 삽입이 이뤄지는 활성 부위임을 제안한다.

Chelatase catalyzes the insertion of divalent metal into tetrapyrrole and plays a key role in the biosynthesis of metallated tetrapyrroles, such as cobalamin, siroheme, heme, and chlorophyll. SirB is a sirohydrochlorin (SHC) chelatase that generates cobalt-SHC or iron-SHC by inserting cobalt or iron into the center of sirohydrochlorin tetrapyrrole. To provide structural insights into the metal-binding and SHC-recognition mechanisms of SirB, we determined the crystal structure of SirB from Bacillus subtilis subsp. spizizenii (bssSirB) in complex with cobalt ions. bssSirB forms a monomeric ${\alpha}/{\beta}$ structure that consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). The NTD and CTD of bssSirB adopt similar structures with a four-stranded ${\beta}-sheet$ that is decorated by ${\alpha}-helices$. bssSirB presents a highly conserved cavity that is generated between the NTD and CTD and interacts with a cobalt ion on top of the cavity using two histidine residues of the NTD. Moreover, our comparative structural analysis suggests that bssSirB would accommodate an SHC molecule into the interdomain cavity. Based on these structural findings, we propose that the cavity of bssSirB functions as the active site where cobalt insertion into SHC occurs.

키워드

MSMHBQ_2019_v55n2_123_f0001.png 이미지

Fig. 1. Sequence and biochemical characterization of bssSirB.

MSMHBQ_2019_v55n2_123_f0002.png 이미지

Fig. 2. Crystal structure of bssSirB.

MSMHBQ_2019_v55n2_123_f0003.png 이미지

Fig. 3. Cobalt ions in the crystal structure of bssSirB.

MSMHBQ_2019_v55n2_123_f0004.png 이미지

Fig. 4. Sequence conservation and active site of bssSirB.

MSMHBQ_2019_v55n2_123_f0005.png 이미지

Fig. 5. Comparative structural analysis of bssSirB and its homologs.

Table 1. Crystallographic statistics of the bssSirB structure

MSMHBQ_2019_v55n2_123_t0001.png 이미지

참고문헌

  1. Al-Karadaghi S, Hansson M, Nikonov S, Jonsson B, and Hederstedt L. 1997. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 5, 1501-1510. https://doi.org/10.1016/S0969-2126(97)00299-2
  2. Bali S, Rollauer S, Roversi P, Raux-Deery E, Lea SM, Warren MJ, and Ferguson SJ. 2014. Identification and characterization of the 'missing' terminal enzyme for siroheme biosynthesis in $\alpha$-proteobacteria. Mol. Microbiol. 92, 153-163. https://doi.org/10.1111/mmi.12542
  3. Brindley AA, Raux E, Leech HK, Schubert HL, and Warren MJ. 2003. A story of chelatase evolution: identification and characterization of a small 13-15-kDa "ancestral" cobaltochelatase ($CbiX^S$) in the archaea. J. Biol. Chem. 278, 22388-22395. https://doi.org/10.1074/jbc.M302468200
  4. Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, and Blanche F. 1992. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme $B_{12}$ biosynthesis in Pseudomonas denitrificans. J. Bacteriol. 174, 7445-7451. https://doi.org/10.1128/jb.174.22.7445-7451.1992
  5. Emsley P and Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  6. Fujishiro T, Shimada Y, Nakamura R, and Ooi M. 2019. Structure of sirohydrochlorin ferrochelatase SirB: the last of the structures of the class II chelatase family. Dalton Trans. 48, 6083-6090. https://doi.org/10.1039/C8DT04727H
  7. Leech HK, Raux E, McLean KJ, Munro AW, Robinson NJ, Borrelly GP, Malten M, Jahn D, Rigby SE, Heathcote P, et al. 2003. Characterization of the cobaltochelatase $CbiX^L$ : evidence for a 4Fe-4S center housed within an MXCXXC motif. J. Biol. Chem. 278, 41900-41907. https://doi.org/10.1074/jbc.M306112200
  8. Leech HK, Raux-Deery E, Heathcote P, and Warren MJ. 2002. Production of cobalamin and sirohaem in Bacillus megaterium: an investigation into the role of the branchpoint chelatases sirohydrochlorin ferrochelatase (SirB) and sirohydrochlorin cobalt chelatase (CbiX). Biochem. Soc. Trans. 30, 610-613. https://doi.org/10.1042/bst0300610
  9. Lobo SA, Videira MA, Pacheco I, Wass MN, Warren MJ, Teixeira M, Matias PM, Romao CV, and Saraiva LM. 2017. Desulfovibrio vulgaris $CbiK^P$ cobaltochelatase: evolution of a haem binding protein orchestrated by the incorporation of two histidine residues. Environ. Microbiol. 19, 106-118. https://doi.org/10.1111/1462-2920.13479
  10. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, and Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/S0021889807021206
  11. Murshudov GN, Vagin AA, and Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
  12. Otwinowski Z and Minor W. 1997. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  13. Park SC, Kwak YM, Song WS, Hong M, and Yoon SI. 2017. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res. 45, 13080-13093. https://doi.org/10.1093/nar/gkx1055
  14. Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, et al. 2003. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem. J. 370, 505-516. https://doi.org/10.1042/bj20021443
  15. Raux E, Schubert HL, and Warren MJ. 2000. Biosynthesis of cobalamin (vitamin $B_{12}$): a bacterial conundrum. Cell Mol. Life Sci. 57, 1880-1893. https://doi.org/10.1007/PL00000670
  16. Romao CV, Ladakis D, Lobo SA, Carrondo MA, Brindley AA, Deery E, Matias PM, Pickersgill RW, Saraiva LM, and Warren MJ. 2011. Evolution in a family of chelatases facilitated by the introduction of active site asymmetry and protein oligomerization. Proc. Natl. Acad. Sci. USA 108, 97-102. https://doi.org/10.1073/pnas.1014298108
  17. Schubert HL, Raux E, Matthews MA, Phillips JD, Wilson KS, Hill CP, and Warren MJ. 2002. Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase. Biochem. Soc. Trans. 30, 595-600. https://doi.org/10.1042/bst0300595
  18. Schubert HL, Raux E, Wilson KS, and Warren MJ. 1999. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 38, 10660-10669. https://doi.org/10.1021/bi9906773
  19. Walker CJ and Willows RD. 1997. Mechanism and regulation of Mg-chelatase. Biochem. J. 327(Pt 2), 321-333. https://doi.org/10.1042/bj3270321
  20. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/S0907444910045749
  21. Yin J, Xu LX, Cherney MM, Raux-Deery E, Bindley AA, Savchenko A, Walker JR, Cuff ME, Warren MJ, and James MN. 2006. Crystal structure of the vitamin $B_{12}$ biosynthetic cobaltochelatase, $CbiX^S$, from Archaeoglobus fulgidus. J. Struct. Funct. Genomics 7, 37-50. https://doi.org/10.1007/s10969-006-9008-x
  22. Zheng H, Chordia MD, Cooper DR, Chruszcz M, Muller P, Sheldrick GM, and Minor W. 2014. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156-170. https://doi.org/10.1038/nprot.2013.172