Fig. 1. Effects of EELP on cell growth and morphology in human lung carcinoma A549 cells.
Fig. 2. G1 arrest of cell cycle in EELP-treated A549 cells.
Fig. 3. Transcriptional repression of G1 checkpoint proteins by EELP in A549 cells.
Fig. 4. Downregulation of G1 checkpoint proteins by EELP in A549 cells.
Table 1. Primer sets for RT-PCR analysis
Table 2. Total phenolic contents (TPC) and DPPH activity of ethanol extract of Litsea populifolia
Table 3. Cell cycle distribution of ethanol extract of Litsea popu-lifolia
참고문헌
- Al-Rimawi, F., Rishmawi, S., Arigat, S. H., Khalid, M. F., Warad, I. and Salah, Z. 2016. Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evid. Based Complement. Alternat. Med. 2016, 9612490.
- Bartek, J. and Lukas, J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117-122. https://doi.org/10.1016/S0014-5793(01)02114-7
- Bernardi, R., Liebermann, D. A. and Hoffman, B. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447-2454. https://doi.org/10.1038/sj.onc.1203564
- Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G. and Rezzonico, R. 2013. Cdc25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ. 20, 800-811. https://doi.org/10.1038/cdd.2013.5
- Biomberg, I. and Hoffmann, I. 1999. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell Biol. 19, 6183-6194. https://doi.org/10.1128/MCB.19.9.6183
- Cai, Z., Chehab, N. H. and Pavletich, N. P. 2009. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell 35, 818-829. https://doi.org/10.1016/j.molcel.2009.09.007
- Choi, I. P. 2013. Reactive oxygen species and cancer. Hanyang Med. Rev. 33, 118-122. https://doi.org/10.7599/hmr.2013.33.2.118
- Coulonval, K., Nockstaele, L., Paternot, S. and Roger, P. P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J. Biol. Chem. 278, 52052-52060. https://doi.org/10.1074/jbc.M307012200
- Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804.
- Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511. https://doi.org/10.1038/nchembio.607
- Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677. https://doi.org/10.1038/sj.embor.embor887
- Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett. 215, 129-140. https://doi.org/10.1016/j.canlet.2004.07.013
- Dulic, V., Kaufmann, W. K., Wilson, S. J., Tisty, T. D., Lees, E., Harper, J. W., Elledge, S. J. and Reed, S. I. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023. https://doi.org/10.1016/0092-8674(94)90379-4
- Eymin, B., Claverie, P., Salon, C., Leduc, C., Col, E., Brambilla, E., Khochbin, S. and Gazzeri, S. 2006. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol. Cell Biol. 26, 4339-4350. https://doi.org/10.1128/MCB.02240-05
- Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847. https://doi.org/10.1038/35071124
- Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M. and Beach, D. 1995. CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577. https://doi.org/10.1126/science.7667636
- Gasparotto, D., Maestro, R., Piccinin, S., Vukosavljevic, T., Barzan, L., Sulfaro, S. and Boiocchi, M. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57, 2366-2368.
- GBD 2015 Risk Factors Collaborators. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659-1724. https://doi.org/10.1016/S0140-6736(16)31679-8
- Gonzalez-Burgos, E. and Gomez-Serranillos, M. P. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319-5341. https://doi.org/10.2174/092986712803833335
- Halliwell, B. H. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85. https://doi.org/10.1016/0076-6879(90)86093-B
- Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-65. https://doi.org/10.1016/S0092-8674(00)81683-9
- Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828. https://doi.org/10.1126/science.7997877
- Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. https://doi.org/10.1038/35077232
- Ito, Y., Yoshida, H., Uruno, T., Takamura, Y., Miya, A., Kuma, K. K. and Miyauchi, A. 2004. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295-300. https://doi.org/10.1007/BF02984552
- Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970. https://doi.org/10.1083/jcb.134.4.963
- Kedare, S. B. and Singh, R. P. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412-422. https://doi.org/10.1007/s13197-011-0251-1
- Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J. and Lukas, J. 2000. Rapid destruction of Cdc 25A in response to DNA damage. Science 288, 1425-1429. https://doi.org/10.1126/science.288.5470.1425
- Malumbres, M. and Barbacid, M. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. https://doi.org/10.1038/nrc2602
- Mraz, M., Malinova, K., Kotaskova, J., Pavlova, S., Tichy, B., Malcikova, J., Stano, K. K., Smardova, J., Brychtova, Y., Doubek, M., Trbusek, M., Mayer, J. and Pospisilova, S. 2009. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23, 1159-1163. https://doi.org/10.1038/leu.2008.377
- Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241. https://doi.org/10.1016/j.tox.2009.10.010
- Niedzwiecki, A., Roomi, M. W., Kalinovsky, T. and Rath, M. 2016. Anticancer efficacy of polyphenols and their combinations. Nutrients 8, E552. https://doi.org/10.3390/nu8090552
- Nilsson, I. and Hoffmann, I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4, 107-114. https://doi.org/10.1007/978-1-4615-4253-7_10
- O'Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29, 151-182.
- Rix, M. 2013. LITSEA POPULIFOLIA. Curtis's Botanical Magazine 30, 193-200. https://doi.org/10.1111/curt.12034
- Ryan, K. M., Phillips, A. C. and Vousden, K. H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332-337. https://doi.org/10.1016/S0955-0674(00)00216-7
- Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic -phosphotungstic acid reagents. Am. J. Enol.Vitic. 16, 144-158.
- Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
- Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
- Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. and Mao, L. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58, 4082-4085.
- Xu, X., Yamamoto, H., Liu, G., Ito, Y., Ngan, C. Y., Kondo, M., Nagano, H., Dono, K., Sekimoto, M. and Monden, M. 2008. CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int. J. Mol. Med. 21, 145-152.
- Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C. Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., Sekimoto, M., Matsuura, N. and Monden, M. 2003. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin. Cancer Res. 9, 1764-1772.
- Zhou, B. B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439. https://doi.org/10.1038/35044005