Fig. 1. Schematic of the microarray data (GSE79228)-based proc-ess used to identify TFAP2C-target genes that function as oncogenes.
Fig. 2. TFAP2C knockdown down-regulated the expression levels of CDC20 and TRIB3 in NSCLC cells.
Fig. 3. The oncogenic effects of CDC20 and TRIB3 on NSCLC cell proliferation.
Fig. 4. The inhibitory effects of CDC20 and TRIB3 on NSCLC cell apoptosis.
Table 1. Primers for determining expression levels of TFAP2C, CDC20 and TRIB3
Table 2. Oncogenes positively regulated by TFAP2C in NSCLC
References
- Barbagallo, C., Brex, D., Caponnetto, A., Cirnigliaro, M., Scalia, M., Magnano, A., Caltabiano, R., Barbagallo, D., Biondi, A., Cappellani, A., Basile, F., Di Pietro, C., Purrello, M. and Ragusa, M. 2018. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids 12, 229-241. https://doi.org/10.1016/j.omtn.2018.05.009
- De Andrade, J. P., Park, J. M., Gu, V. W., Woodfield, G. W., Kulak, M. V., Lorenzen, A. W., Wu, V. T., Van Dorin, S. E., Spanheimer, P. M. and Weigel, R. J. 2016. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for Vandetanib. Mol. Cancer Ther. 15, 503-511. https://doi.org/10.1158/1535-7163.MCT-15-0548-T
- Dong, S., Xia, J., Wang, H., Sun, L., Wu, Z., Bin, J., Liao, Y., Li, N. and Liao, W. 2016. Overexpression of TRIB3 promotes angiogenesis in human gastric cancer. Oncol. Rep. 36, 2339-2348. https://doi.org/10.3892/or.2016.5017
- Hong, B., Zhou, J., Ma, K., Zhang, J., Xie, H., Zhang, K., Li, L., Cai, L., Zhang, N., Zhang, Z. and Gong, K. 2019. TRIB3 promotes the proliferation and invasion of renal cell carcinoma cells via activating MAPK signaling pathway. Int. J. Biol. Sci. 15, 587-597. https://doi.org/10.7150/ijbs.29737
- Kang, J., Kim, W., Lee, S., Kwon, D., Chun, J., Son, B., Kim, E., Lee, J. M., Youn, H. and Youn, B. 2017. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene 36, 1585-1596. https://doi.org/10.1038/onc.2016.328
- Kang, J., Kim, W., Seo, H., Kim, E., Son, B., Lee, S., Park, G., Jo, S., Moon, C., Youn, H. and Youn, B. 2018. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci. Rep. 8, 8394. https://doi.org/10.1038/s41598-018-26762-1
- Kangas, L., Gronroos, M. and Nieminen, A. L. 1984. Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med. Biol. 62, 338-343.
- Kim, E., Kim, W., Lee, S., Chun, J., Kang, J., Park, G., Han, I., Yang, H. J., Youn, H. and Youn, B. 2017. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci. Rep. 7, 8923. https://doi.org/10.1038/s41598-017-09447-z
- Kim, W., Kim, E., Lee, S., Kim, D., Chun, J., Park, K. H., Youn, H. and Youn, B. 2016. TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp. Mol. Med. 48, e273. https://doi.org/10.1038/emm.2016.125
- Kim, W., Youn, H., Lee, S., Kim, E., Kim, D., Sub Lee, J., Lee, J. M. and Youn, B. 2018. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp. Mol. Med. 50, e434. https://doi.org/10.1038/emm.2017.247
- Kolat, D., Kaluzinska, Z., Bednarek, A. K. and Pluciennik, E. 2019. The biological characteristics of transcription factors AP-2alpha and AP-2gamma and their importance in various types of cancers. Biosci. Rep. 39, pii: BSR20181928.
- Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Miyoshi, N., Ishii, H., Mimori, K., Takatsuno, Y., Kim, H., Hirose, H., Sekimoto, M., Doki, Y. and Mori, M. 2009. Abnormal expression of TRIB3 in colorectal cancer: a novel marker for prognosis. Br. J. Cancer 101, 1664-1670. https://doi.org/10.1038/sj.bjc.6605361
- Park, J. M., Wu, T., Cyr, A. R., Woodfield, G. W., De Andrade, J. P., Spanheimer, P. M., Li, T., Sugg, S. L., Lal, G., Domann, F. E., Zhang, W. and Weigel, R. J. 2015. The role of Tcfap2c in tumorigenesis and cancer growth in an activated Neu model of mammary carcinogenesis. Oncogene 34, 6105-6114. https://doi.org/10.1038/onc.2015.59
- Shang, G., Ma, X. and Lv, G. 2018. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 17, 43-52. https://doi.org/10.1080/15384101.2017.1387700
- Siegel, R. L., Miller, K. D. and Jemal, A. 2019. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
- Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., Shrivastav, T. G. and Chaube, S. K. 2015. Apoptosis in mammalian oocytes: a review. Apoptosis 20, 1019-1025. https://doi.org/10.1007/s10495-015-1136-y
- Zhang, Y., Xue, Y. B., Li, H., Qiu, D., Wang, Z. W. and Tan, S. S. 2017. Inhibition of cell survival by curcumin is associated with downregulation of cell division cycle 20 (Cdc20) in pancreatic cancer cells. Nutrients 9, E109. https://doi.org/10.3390/nu9020109