DOI QR코드

DOI QR Code

인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation

  • 박정우 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 리황부 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 오창호 (대경에스코) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Park, Jeong-Woo (Department of Chemical Engineering, Kangwon National University) ;
  • Ly, Hoang Vu (Department of Chemical Engineering, Kangwon National University) ;
  • Oh, Changho (Daekyung Esco) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 투고 : 2019.02.15
  • 심사 : 2019.03.19
  • 발행 : 2019.06.30

초록

대나무는 지구상에 존재하는 식물 중 적절한 기후와 토양조건에서 생산성이 가장 높고, 성장속도가 가장 빠른 다년생 식물로 알려져 있다. 전통적으로 아시아에서 대나무는 음식, 건축 및 다양한 재료로 활용되고 있다. 바이오매스 자원으로 대나무는 열분해과정을 거쳐 활성탄으로 제조될 수 있다. 본 연구에서는 탄화온도, 활성화 온도, 시간, 수증기의 양, 그리고 인산의 양 등을 변화에 따른 최적의 대나무 활성탄 제조 연구를 수행하였다. 대나무 탄화 후 수증기 활성화를 위해 $700{\sim}900^{\circ}C$의 온도, $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ 수증기 유량 범위에서 1 ~ 3 h 동안 활성화를 진행하였다. 수증기 유량을 $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$으로 2 h 동안 실험한 결과 활성탄 수율과 비표면적은 각각 2.04 ~ 20.59 wt%, $499.17{\sim}1074.04m^2\;g^{-1}$의 값이 나왔다. 대나무와 인산의 질량비를 1:1로 혼합한 후 $700^{\circ}C$에서 유량 $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ 속도로 2 h 동안 활성화를 진행한 결과 활성탄 수율과 비표면적은 각각 24.67 wt%, $1389.59m^2\;g^{-1}$의 값이 나타냈다. 제조된 대나무 활성탄을 대상으로 메틸렌블루 흡착 실험을 통해 유사 1차, 2차 속도식 모델을 적용하였으며, 화학적 흡착을 의미하는 유사 2차 속도식에 따랐다.

Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

키워드

CJGSB2_2019_v25n2_129_f0001.png 이미지

Figure 1. Schematic diagram of tubular type pyrolysis reactor.

CJGSB2_2019_v25n2_129_f0002.png 이미지

Scheme 1. Experimental procedure of bamboo activated carbon and phosphoric acid mixed bamboo activated carbon, Formation of phosphate esters on cellulose side-chains (T < 450 ℃) and cross-linking and Mechanism of phosphate ester formation by phosphorylation of cellulose (T > 450 ℃) [21].

CJGSB2_2019_v25n2_129_f0003.png 이미지

Figure 2. TG&DTG curves and peak separation of bamboo at heating rates of 10 ℃ min-1.

CJGSB2_2019_v25n2_129_f0004.png 이미지

Figure 3. SEM image of bamboo activated carbon at 750 ℃, 800 ℃, and 850 ℃; ×500.

CJGSB2_2019_v25n2_129_f0005.png 이미지

Figure 4. Micropore and mesopore distribution using BET analysis of bamboo activated carbon with different steam flow rate.

CJGSB2_2019_v25n2_129_f0006.png 이미지

Figure 5. Micropore and mesopore distribution using BET analysis of bamboo activated carbon with different mixing ratio phosphoric acid.

CJGSB2_2019_v25n2_129_f0007.png 이미지

Figure 6. SEM image of phosphoric acid mixed bamboo activated carbon at 600 ℃, 700 ℃, and 850 ℃; ×500.

CJGSB2_2019_v25n2_129_f0008.png 이미지

Figure 7. FT-IR spectra of carbonization carbon and activated carbon for AC3 (800 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h) and AC-P4 (bamboo : phosphoric acid = 1:1 wt ratio, 700 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h) conditions: 1. AC3 Carbonization carbon, 2. AC3 Activated carbon, 3. AC-P4 Carbonization carbon, 4. AC-P4 Activated carbon.

CJGSB2_2019_v25n2_129_f0009.png 이미지

Figure 8. Weight loss for bamboo activated carbon: (a) AC3 (800 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h) and (b) AC-P4 (bamboo : phosphoric acid = 1:1 wt ratio, 700 ℃, 1.4 mL-H2O gchar-1 h-1, 2 h) at heating rate of 10 ℃min-1.

CJGSB2_2019_v25n2_129_f0010.png 이미지

Figure 9. Kinetic parameters for methylene blue adsorption on activated carbon at different weight: AC3 (800 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h) and AC-P4 (bamboo : phosphoric acid = 1:1 wt ratio, 700 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h).

Table 1. Characteristics of bamboo: contents of volatile matter, fixed carbon, moisture, ash, elements and higher heating value (HHV)

CJGSB2_2019_v25n2_129_t0001.png 이미지

Table 2. Inorganic compositions of bamboo

CJGSB2_2019_v25n2_129_t0002.png 이미지

Table 3. Characteristics of bamboo activated carbon produced through different activation conditions

CJGSB2_2019_v25n2_129_t0003.png 이미지

Table 4. Effect of the mixing ratio of bamboo and phosphoric acid on drying and carbonization yield

CJGSB2_2019_v25n2_129_t0004.png 이미지

Table 5. Effect of mixing ratio of bamboo and phosphoric acid, activation temperature, and steam flow rate on product yield and characteristics

CJGSB2_2019_v25n2_129_t0005.png 이미지

Table 6. Kinetic parameters for adsorption of methylene blue on activated carbon at different weight; (a) AC3 (800 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h) and (b) AC-P4 (bamboo : phosphoric acid = 1:1 wt ratio, 700 ℃, 1.4 mL-H2O g-char-1 h-1, 2 h)

CJGSB2_2019_v25n2_129_t0006.png 이미지

참고문헌

  1. Marsh, H., and Rodríguez-Reinoso, F., "Activated Carbon," Elsevier, 25-26 (2014).
  2. Tan, X. F., Liu, S. B., Liu, Y. G., Gu, Y. L., Zeng, G. M., Hu, X. J., Wang, X., Liu, S. H., and Jiang, L. H., "Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage," Bioresource Technol., 227, 359-372 (2017). https://doi.org/10.1016/j.biortech.2016.12.083
  3. Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., and Hashmi, S. A., "Preparation of Highly Porous Binderless Activated Carbon Electrodes from Fibres of Oil Palm Empty Fruit Bunches for Application in Supercapacitors," Bioresource Technol., 132, 254-261 (2013). https://doi.org/10.1016/j.biortech.2013.01.044
  4. Chan, K. Y., Zwieten, L. V., Meszaros, I., Downie, A., and Joseph, S., "Agronomic Values of Greenwaste Biochar as a Soil Amendment," Australian. J. Soil Res., 45, 629-634 (2007). https://doi.org/10.1071/SR07109
  5. Zou, Y., and Han, B. X., "High-Surface-Area Activated Carbon from Chinese Coal," Energ. Fuel, 15, 1383-1386 (2001). https://doi.org/10.1021/ef0002851
  6. Zhang, J., Zhong, Z., Shen, D., Zhao, J., Zhang, H., Yang, M., and Li, W., "Preparation of Bamboo-Based Activated Carbon and Its Application in Direct Carbon Fuel Cells," Energy Fuels., 25, 2187-2193 (2011). https://doi.org/10.1021/ef200161c
  7. Zhang, Y.-J., Xing, Z.-J., Duan, Z.-K., Li, M., and Wang, Y., "Effects of Steam Activation on the Pore Structure and Surface Chemistry of Activated Carbon Derived from Bamboo Waste," Appl. Surf. Sci., 315, 279-286 (2014). https://doi.org/10.1016/j.apsusc.2014.07.126
  8. Lou, K., Rajapaksha, A. U., Ok, Y. S., and Chang, S. X., "Pyrolysis Temperature and Steam Activation Effects on Sorption of Phosphate on Pine Sawdust Biochars in Aqueous Solutions," Chem. Spec. Bioavailab., 28, 42-50 (2016). https://doi.org/10.1080/09542299.2016.1165080
  9. Molina, A. Haynes, B. S., and Shaddix, C. R., "Effect of Reactant Penetration on Inhibition of Coal Char Gasification," Energetica., 36, 19-24 (2006).
  10. Espinal, J. F., Mondragon, F., and Truong, T. N., "Density Functional Theory Study of Carbon-$H_2O$ Reactions During Gasification with Steam," Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 822-823 (2004).
  11. Ozgul., G., Ozcan, A., Ozcan, A. S., and Gercel, H. F., "Preparation of Activated Carbon from a Renewable Bio-Plant of Euphorbia Rigida by $H_2SO_4$ Activation and Its Adsorption Behavior in Aqueous Solutions," Appl. Surf. Sci., 253, 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  12. Danish, M., Hashim, R., Rafatullah, M., Sulaiman, O., and Ahmad, A., "Adsorption of Pb (II) Ions from Aqueous Solutions by Date Bead Carbon Activated with $ZnCl_2$," Clean-Soil Air Water., 39, 392-399 (2011). https://doi.org/10.1002/clen.201000185
  13. You, B. O., "Evaluation and Implications of Bamboo Resources in Korea," NIFOS, 102, 2288 (2018).
  14. Ly, H. V., Kim, J., and Kim, S.-S. "Pyrolysis Characteristics and Kinetics of Palm Fiber in Tubing Reactor," Renew. Energ., 54, 91-95 (2013). https://doi.org/10.1016/j.renene.2012.08.053
  15. Ly, H. V., Kim, S.-S., Kim, J., Choi, J. H., and Woo, H. C., "Effect of Acid Washing on Pyrolysis of Cladophora Socialis Alga in Microtubing Reactor," Energ. Convers. Manage., 106, 260-267 (2015). https://doi.org/10.1016/j.enconman.2015.09.041
  16. Korean Standard Certification, Korean Agency for Technology and Standards, KS M-1802, (2003).
  17. Ly, H. V., Lim, D.-H., Sim, J. W., Kim, S.-S., and Kim, J., "Catalytic Pyrolysis of Tulip Tree (Liriodendron) in Bubbling Fluidized-Bed Reactor for Upgrading Bio-Oil Using Dolomite Catalyst," Energy, 162, 564575 (2018).
  18. Lim, D. H., Sim, J. W., Kim, S.-S., and Kim, K., "Pyrolysis of Quercus Variabilis in a Bubbling Fluidized Bed Reactor," Korean Chem. Eng. Res., 54(5), 687-692 (2016). https://doi.org/10.9713/KCER.2016.54.5.687
  19. Choi, G. H., "Pyrolysis Characteristics for the Production of Bio-energy from Hemp by-products," Kangwon National University, Mater Thesis (2013).
  20. Demirbaş, A., "Calculation of Higher Heating Values of Biomass Fuels," Fuel, 76(5), 431-434 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  21. Jagtoyen, M., and Derbyshire, F., "Activated Carbons from Yellow Poplar and White Oak by $H_3PO_4$ Activation," Carbon, 36, 1085-1097 (1998). https://doi.org/10.1016/S0008-6223(98)00082-7
  22. Jagtoyen, M., and Derbyshire, F., "Some Considerations of the Origins of Porosity in Carbons from Chemically Activated Wood," Carbon, 31, 1185-1192 (1993). https://doi.org/10.1016/0008-6223(93)90071-H
  23. Solum, M. S., Pugmire, R. J., Jagtoyen, M., and Derbyshire, F., "Evolution of Carbon Structure in Chemically Activated Wood," Carbon, 33, 1247-1254 (1995). https://doi.org/10.1016/0008-6223(95)00067-N
  24. SYakout, S. M., and Sharaf El-Deen, G., "Characterization of Activated Carbon Prepared by Phosphoric Acid Activation of Olive Stones," Arab. J. Chem., 9, S1155-S1162 (2016). https://doi.org/10.1016/j.arabjc.2011.12.002
  25. Krumins, J., Klavins, M., Seglins, V., and Kaup, E., "Comparative Study of Peat Composition by Using FT-IR Spectroscopy," Mat. Sci. App. Chem., 26, 106-114 (2012).
  26. Movasaghi, Z., Rehman, S., and Rehman, I., "Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues," Appl. Spectrosc. Rev., 43(2), 134-179 (2008). https://doi.org/10.1080/05704920701829043
  27. Rehman, I., Movasaghi, Z., and Rehman, S., "Vibrational Spectroscopy for Tissue Analysis," CRC Press. (2012).
  28. Lee, G. B., Kim, H.-J., Park, S.-K., Ok, Y.-S., and Ahn, J.-W., "Adsorption of Methylene Blue by Soybean Stover and Rice Hull Derived Biochars Compared to that by Activated Carbon," J. Korean Soc. Water Environ., 32(3), 291-296 (2016). https://doi.org/10.15681/KSWE.2016.32.3.291
  29. Chiou, M.-S., and Ly, H.-Y., "Equilibrium and Kinetic Modeling of Adsorption of Reactive Dye on Cross-Linked Chitosan Beads," J. Hazard. Mater., 93(2), 233-248 (2002). https://doi.org/10.1016/S0304-3894(02)00030-4
  30. HO, Y.S., and McKay, G., "Pseudo-Second Order Model for Sorption Processes," Process Biochem., 34(5), 451-465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  31. Ho, Y. S., and McKay, G., "A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents," Process Saf. Environ. Protec., 76, 332-340 (1998). https://doi.org/10.1205/095758298529696
  32. Lee, C.-H., Park, J.-M., and Lee, M.-G., "Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics," J. Environ. Sci. Int., 24(2), 151-162 (2015). https://doi.org/10.5322/JESI.2015.24.2.151