Scheme 1. Preparation process of DMF-based polyurethanes
Figure 1. Viscosity of DMF-based polyurethanes.
Figure 2. FT-IR spectra of DMF-based polyurethanes.
Figure 3. TGA curve of PU films.
Figure 4. DSC thermograms of PU films.
Figure 5. Storage modulus (a), Loss modulus (b), and Tan delta (c) of PU films.
Figure 6. Stress-strain curves of PU films.
Figure 7. SEM micrographs of wet-type artificial leather based on nonwoven fabrics coated with DMF-based polyurethanes.
Figure 8. Transmittance curves (a) and transparency (b) of PU films.
Figure 9. Bio carbon contents by ASTM D 6866-16 test method of PU films.
Table 1. Macroglycols used in this study
Table 2. Sample designation and composition of polyurethane (PU) containing bio polyol
Table 3. Thermal and mechanical properties of PU films
Table 4. The weight ratio of bio polyol to total weight and bio carbon contents by ASTM D 6866-16 test method PU films
참고문헌
- Raquez, J.-M., Nabar, Y., Narayan, R., and Dubois, P., "New Developments in Biodegradable Starch-based Nanocomposites," Int. Polym. Process, 22, 463-470 (2007). https://doi.org/10.3139/217.2076
- Saxena, R., Adhikari, D., and Goyal, H., "Biomass-based Energy Fuel through Biochemical Routes: A Review," Renewable Sustainable Energy Rev., 13, 167-178 (2009). https://doi.org/10.1016/j.rser.2007.07.011
- Biermann, U., Bornscheuer, U., Meier, M. A., Metzger, J. O., and Angew, H. J., "Oils and Fats as Renewable Raw Materials in Chemistry," Int. Ed., 50, 3854 (2011). https://doi.org/10.1002/anie.201002767
- Van, A., chiou, K., and Ishida, H., "Use of Renewable Resource Vanillin for the Preparation of Benzoxazine Resin and Reactive Monomeric Surfactant Containing Oxazine Ring," Polymer, 55, 1443-1442 (2014). https://doi.org/10.1016/j.polymer.2014.01.041
- Crocher, M., and Crofcheck, C., "Biomass Conversion to Liquid Fuels and Chemicals," Energeia, 17, 1-3 (2006).
- Espinoso, L. M., and Meier, M. A., "The Perfect Renewable Resource for Polymer Science," Polym. J., 47, 837-852 (2011).
- Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., and Weckhuysen, B. M., "The Catalytic Valorization of Lignin for the Production of Renewable Chemicals," Chem. Rev., 110, 3552-3599 (2010). https://doi.org/10.1021/cr900354u
- No, S. Y., "Inedible Vegetable Oils and Their Derivatives for Alternative Diesel Fuels in CI Engines: a Review," Renewable and Sustainable Energy Rev., 15, 131-149 (2011). https://doi.org/10.1016/j.rser.2010.08.012
- Pillai, C. K., Pillai, S., and Sharma, C. P., "Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation," Monomers Polym., 34, 641-678 (2009).
- Ryu, Y. S., Oh, K. W., and Kim, S. H., "Synthesis and Characterization of a Furan-based Self-healing Polymer," Macromol. Res., 24, 874-880 (2016). https://doi.org/10.1007/s13233-016-4122-5
- Cherubini, F., "The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals," Energy covers & Manage., 51, 1412-1421 (2010). https://doi.org/10.1016/j.enconman.2010.01.015
- Naik, S. N., Goud, V. V., Rout, P. K., and Dalai, A. K., "Production of First and Second Generation Biofuels: A Comprehensive Review," Renewable Sustainable Energy Rev., 14, 578-597 (2010). https://doi.org/10.1016/j.rser.2009.10.003
- Sims, R. E., Mabee, W., Saddler, J. N., and Taylor, M., "An Overview of Second Generation Biofuel Technologies," Bioresour. Technol., 101, 1570-1580 (2010). https://doi.org/10.1016/j.biortech.2009.11.046
- Clark, J. H., and Chem. J., "Green Chemistry for the Second Generation Biorefinery-sustainable Chemical Manufacturing based on Biomass," Technol. Biotechnol., 82, 603-609 (2007). https://doi.org/10.1002/jctb.1710
- Da Silva, E. B., Zabkova, M., Araújo, J., Cateto, C., Barreiro, M., Belgacem, M., and Rodrigues, A., "An Integrated Process to Produce Vanillin and Lignin-based Polyurethanes from Kraft Lignin," Chem. Eng. Res. Des., 87, 1276-1292 (2009). https://doi.org/10.1016/j.cherd.2009.05.008
- Yao, Y., Yoshioka M., and Shiraishi, N., "Water‐absorbing Polyurethane Foams from Liquefied Starch," J. Appl. Polym. Sci., 60, 1939-1949 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960613)60:11<1939::AID-APP18>3.0.CO;2-W
- Yan, Y., Pang, H., Yang, X., Zhang R., and Liao, B., "Preparation and Characterization of Water-blown Polyurethane Foams from Liquefied Cornstalk Polyol," J. Appl. Polym. Sci., 110, 1099-1111 (2008). https://doi.org/10.1002/app.28692
- Petrovic, Z. S., Wan, X., Bilic, O., Zlatanic, A., Hong, J., and Degruson, D., "Polyols and Polyurethanes from Crude Algal Oil," J. Am. Oil Chem. Soc., 90, 1073-1078 (2013). https://doi.org/10.1007/s11746-013-2245-9
- Posten, C., and Schaub, G., "Microalgae and Terrestrial Biomass as Source for Fuels - A Process View," J. Biotechnol., 142, 64-69 (2009). https://doi.org/10.1016/j.jbiotec.2009.03.015
- Fenton, O., "Agricultural Nutrient Surpluses as Potential Input Sources to Grow Third Generation Biomass (microalgae): A Review," Algal Res., 1, 49-56 (2012). https://doi.org/10.1016/j.algal.2012.03.003
- Yoon, J. J., Kim, Y. J., Kim, S. H., Kim, H. J., Ryu, J. Y., choi, G. S., and Shin, M. K., "Production of Polysaccharides and Corresponding Sugars from Red Seaweed," Adv. Mat. Res., 93, 463-466 (2010). https://doi.org/10.4028/www.scientific.net/AMR.93-94.463
- Pfister, D. P., Xia, Y., and Larock, R. C., "Recent Advances in Vegetable Oil‐Based Polyurethanes," ChemSusChem., 4, 703-717 (2011). https://doi.org/10.1002/cssc.201000378
- Glowinska, E., and Datta, J., "A Mathematical Model of Rheological Behavior of Novel Bio-based Isocyanateterminated Polyurethane Prepolymers," Ind. Crops Prod., 60, 123-129 (2014). https://doi.org/10.1016/j.indcrop.2014.06.016
- Shen, L., Haufe, J., and Patel, M. K., "Product Overview and Market Projection of Emerging Bio-based Plastics," Report for EPNOE and European Bioplastics, 243 (2009).
- Dieterich, D., Webele, W., and Witt, H., "Polyurethane Ionomers a New Class of Block Polymers," Journal of the Gesellschaft Deutcher Chemiker, 9, 40-50 (1970).
- Cho, C. H., Seo, H. D., Min, B. H., Cho, K., Noh, S. T., Choi, H. G., Cho, Y. H., and Kim, J. H., "Synthesis and Properties of Aqueous Polyurethane Dispersion Based on Mixed Polyols: Poly (hexamethylene carbonate) glycol/Poly (oxytetramethylene) glycol," J. of Korea Ind. Eng. Chem., 13, 825-831 (2002).
- Billmeyer, Fred W., "Textbook of Polymer Science," Wiley, New York, 244-255 (2003).
- Huang, M., Yang, B. Y., and Yong, Q. F., "Polyurethane Shape Memory Polymer," CRC Press, Boca Raton, 34-36 (2003).
- Fried, Joel R., "Polymer Science and Technology," Prentice Hall PTR, New Jersey, 180-182 (2003).
- Kesslmeier J., and Staudt, M., "Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology," J. Atmospheric Chem., 33, 23-88 (1999). https://doi.org/10.1023/A:1006127516791
- Wang, S., Ang, H. M., and Tade, M. O., "Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art," Environment International, 33, 694-705 (2007). https://doi.org/10.1016/j.envint.2007.02.011
- Oertel, G., "Polyurethane Handbook," Carl Hanser Verlag, Munich, 555-564 (1993).