DOI QR코드

DOI QR Code

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather

폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성

  • Sur, Suk-Hun (Department of Organic Material Science and Engineering, Busan National University) ;
  • Ko, Jae-Wang (Korea Institute of Footwear & Leather Technology) ;
  • Choi, Pil-Jun (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Jae-Yeon (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Busan National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Busan National University)
  • 서석훈 (부산대학교 유기소재시스템공학과) ;
  • 고재왕 (한국신발피혁연구원) ;
  • 최필준 (한국신발피혁연구원) ;
  • 이재년 (한국신발피혁연구원) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2019.05.22
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.

최근 재생자원으로부터 바이오 폴리올을 합성하는 것이 주목을 받고 있다. 특히 고분자의 합성에서 이러한 바이오 폴리올을 활용하는 것은 대단히 중요한 과제이다. 폴리카보네이트 폴리올/바이오 폴리올(PO3G: 옥수수 당의 발효에 의해 제조된 1,3-프로판 디올로부터 제조된 폴리트리메틸렌 에터 글리콜), 메틸렌디페닐디이소시아네이트 및 1,4-부탄디올을 사용하여 일련의 디메틸포름아미드(DMF) 기반 폴리우레탄을 합성하였다. 본 연구에서는 폴리우레탄 필름의 특성과 습식 인조피혁의 셀(cell) 특성을 조사하였다. 폴리카보네이트 폴리올/바이오 폴리올에서 바이오 폴리올의 함량이 증가할수록 폴리우레탄 필름의 인장강도는 감소하지만 연신율은 증가하였으며, 유리전이온도는 낮아짐을 알 수 있었다. 또한 습식공법에 의한 인조피혁 단면을 분석한 결과 폴리카보네이트 폴리올 함량이 증가함에 따라 인조피혁에 형성된 셀의 수와 균일성이 증가함을 알 수 있었다. 이 결과로부터 적정량의 바이오 폴리올을 사용한 DMF 기반 폴리우레탄의 경우에 충분히 인조피혁에 사용할 수 있음을 알 수 있었다. 바이오 탄소 함량은 폴리우레탄의 제조에 사용한 바이오 폴리올의 함량 증가에 따라 비례하여 증가하였다.

Keywords

CJGSB2_2019_v25n2_114_f0001.png 이미지

Scheme 1. Preparation process of DMF-based polyurethanes

CJGSB2_2019_v25n2_114_f0002.png 이미지

Figure 1. Viscosity of DMF-based polyurethanes.

CJGSB2_2019_v25n2_114_f0003.png 이미지

Figure 2. FT-IR spectra of DMF-based polyurethanes.

CJGSB2_2019_v25n2_114_f0004.png 이미지

Figure 3. TGA curve of PU films.

CJGSB2_2019_v25n2_114_f0005.png 이미지

Figure 4. DSC thermograms of PU films.

CJGSB2_2019_v25n2_114_f0006.png 이미지

Figure 5. Storage modulus (a), Loss modulus (b), and Tan delta (c) of PU films.

CJGSB2_2019_v25n2_114_f0007.png 이미지

Figure 6. Stress-strain curves of PU films.

CJGSB2_2019_v25n2_114_f0008.png 이미지

Figure 7. SEM micrographs of wet-type artificial leather based on nonwoven fabrics coated with DMF-based polyurethanes.

CJGSB2_2019_v25n2_114_f0009.png 이미지

Figure 8. Transmittance curves (a) and transparency (b) of PU films.

CJGSB2_2019_v25n2_114_f0010.png 이미지

Figure 9. Bio carbon contents by ASTM D 6866-16 test method of PU films.

Table 1. Macroglycols used in this study

CJGSB2_2019_v25n2_114_t0001.png 이미지

Table 2. Sample designation and composition of polyurethane (PU) containing bio polyol

CJGSB2_2019_v25n2_114_t0002.png 이미지

Table 3. Thermal and mechanical properties of PU films

CJGSB2_2019_v25n2_114_t0003.png 이미지

Table 4. The weight ratio of bio polyol to total weight and bio carbon contents by ASTM D 6866-16 test method PU films

CJGSB2_2019_v25n2_114_t0004.png 이미지

References

  1. Raquez, J.-M., Nabar, Y., Narayan, R., and Dubois, P., "New Developments in Biodegradable Starch-based Nanocomposites," Int. Polym. Process, 22, 463-470 (2007). https://doi.org/10.3139/217.2076
  2. Saxena, R., Adhikari, D., and Goyal, H., "Biomass-based Energy Fuel through Biochemical Routes: A Review," Renewable Sustainable Energy Rev., 13, 167-178 (2009). https://doi.org/10.1016/j.rser.2007.07.011
  3. Biermann, U., Bornscheuer, U., Meier, M. A., Metzger, J. O., and Angew, H. J., "Oils and Fats as Renewable Raw Materials in Chemistry," Int. Ed., 50, 3854 (2011). https://doi.org/10.1002/anie.201002767
  4. Van, A., chiou, K., and Ishida, H., "Use of Renewable Resource Vanillin for the Preparation of Benzoxazine Resin and Reactive Monomeric Surfactant Containing Oxazine Ring," Polymer, 55, 1443-1442 (2014). https://doi.org/10.1016/j.polymer.2014.01.041
  5. Crocher, M., and Crofcheck, C., "Biomass Conversion to Liquid Fuels and Chemicals," Energeia, 17, 1-3 (2006).
  6. Espinoso, L. M., and Meier, M. A., "The Perfect Renewable Resource for Polymer Science," Polym. J., 47, 837-852 (2011).
  7. Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., and Weckhuysen, B. M., "The Catalytic Valorization of Lignin for the Production of Renewable Chemicals," Chem. Rev., 110, 3552-3599 (2010). https://doi.org/10.1021/cr900354u
  8. No, S. Y., "Inedible Vegetable Oils and Their Derivatives for Alternative Diesel Fuels in CI Engines: a Review," Renewable and Sustainable Energy Rev., 15, 131-149 (2011). https://doi.org/10.1016/j.rser.2010.08.012
  9. Pillai, C. K., Pillai, S., and Sharma, C. P., "Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation," Monomers Polym., 34, 641-678 (2009).
  10. Ryu, Y. S., Oh, K. W., and Kim, S. H., "Synthesis and Characterization of a Furan-based Self-healing Polymer," Macromol. Res., 24, 874-880 (2016). https://doi.org/10.1007/s13233-016-4122-5
  11. Cherubini, F., "The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals," Energy covers & Manage., 51, 1412-1421 (2010). https://doi.org/10.1016/j.enconman.2010.01.015
  12. Naik, S. N., Goud, V. V., Rout, P. K., and Dalai, A. K., "Production of First and Second Generation Biofuels: A Comprehensive Review," Renewable Sustainable Energy Rev., 14, 578-597 (2010). https://doi.org/10.1016/j.rser.2009.10.003
  13. Sims, R. E., Mabee, W., Saddler, J. N., and Taylor, M., "An Overview of Second Generation Biofuel Technologies," Bioresour. Technol., 101, 1570-1580 (2010). https://doi.org/10.1016/j.biortech.2009.11.046
  14. Clark, J. H., and Chem. J., "Green Chemistry for the Second Generation Biorefinery-sustainable Chemical Manufacturing based on Biomass," Technol. Biotechnol., 82, 603-609 (2007). https://doi.org/10.1002/jctb.1710
  15. Da Silva, E. B., Zabkova, M., Araújo, J., Cateto, C., Barreiro, M., Belgacem, M., and Rodrigues, A., "An Integrated Process to Produce Vanillin and Lignin-based Polyurethanes from Kraft Lignin," Chem. Eng. Res. Des., 87, 1276-1292 (2009). https://doi.org/10.1016/j.cherd.2009.05.008
  16. Yao, Y., Yoshioka M., and Shiraishi, N., "Water‐absorbing Polyurethane Foams from Liquefied Starch," J. Appl. Polym. Sci., 60, 1939-1949 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960613)60:11<1939::AID-APP18>3.0.CO;2-W
  17. Yan, Y., Pang, H., Yang, X., Zhang R., and Liao, B., "Preparation and Characterization of Water-blown Polyurethane Foams from Liquefied Cornstalk Polyol," J. Appl. Polym. Sci., 110, 1099-1111 (2008). https://doi.org/10.1002/app.28692
  18. Petrovic, Z. S., Wan, X., Bilic, O., Zlatanic, A., Hong, J., and Degruson, D., "Polyols and Polyurethanes from Crude Algal Oil," J. Am. Oil Chem. Soc., 90, 1073-1078 (2013). https://doi.org/10.1007/s11746-013-2245-9
  19. Posten, C., and Schaub, G., "Microalgae and Terrestrial Biomass as Source for Fuels - A Process View," J. Biotechnol., 142, 64-69 (2009). https://doi.org/10.1016/j.jbiotec.2009.03.015
  20. Fenton, O., "Agricultural Nutrient Surpluses as Potential Input Sources to Grow Third Generation Biomass (microalgae): A Review," Algal Res., 1, 49-56 (2012). https://doi.org/10.1016/j.algal.2012.03.003
  21. Yoon, J. J., Kim, Y. J., Kim, S. H., Kim, H. J., Ryu, J. Y., choi, G. S., and Shin, M. K., "Production of Polysaccharides and Corresponding Sugars from Red Seaweed," Adv. Mat. Res., 93, 463-466 (2010). https://doi.org/10.4028/www.scientific.net/AMR.93-94.463
  22. Pfister, D. P., Xia, Y., and Larock, R. C., "Recent Advances in Vegetable Oil‐Based Polyurethanes," ChemSusChem., 4, 703-717 (2011). https://doi.org/10.1002/cssc.201000378
  23. Glowinska, E., and Datta, J., "A Mathematical Model of Rheological Behavior of Novel Bio-based Isocyanateterminated Polyurethane Prepolymers," Ind. Crops Prod., 60, 123-129 (2014). https://doi.org/10.1016/j.indcrop.2014.06.016
  24. Shen, L., Haufe, J., and Patel, M. K., "Product Overview and Market Projection of Emerging Bio-based Plastics," Report for EPNOE and European Bioplastics, 243 (2009).
  25. Dieterich, D., Webele, W., and Witt, H., "Polyurethane Ionomers a New Class of Block Polymers," Journal of the Gesellschaft Deutcher Chemiker, 9, 40-50 (1970).
  26. Cho, C. H., Seo, H. D., Min, B. H., Cho, K., Noh, S. T., Choi, H. G., Cho, Y. H., and Kim, J. H., "Synthesis and Properties of Aqueous Polyurethane Dispersion Based on Mixed Polyols: Poly (hexamethylene carbonate) glycol/Poly (oxytetramethylene) glycol," J. of Korea Ind. Eng. Chem., 13, 825-831 (2002).
  27. Billmeyer, Fred W., "Textbook of Polymer Science," Wiley, New York, 244-255 (2003).
  28. Huang, M., Yang, B. Y., and Yong, Q. F., "Polyurethane Shape Memory Polymer," CRC Press, Boca Raton, 34-36 (2003).
  29. Fried, Joel R., "Polymer Science and Technology," Prentice Hall PTR, New Jersey, 180-182 (2003).
  30. Kesslmeier J., and Staudt, M., "Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology," J. Atmospheric Chem., 33, 23-88 (1999). https://doi.org/10.1023/A:1006127516791
  31. Wang, S., Ang, H. M., and Tade, M. O., "Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art," Environment International, 33, 694-705 (2007). https://doi.org/10.1016/j.envint.2007.02.011
  32. Oertel, G., "Polyurethane Handbook," Carl Hanser Verlag, Munich, 555-564 (1993).