DOI QR코드

DOI QR Code

Evaluation of the future agricultural drought severity of South Korea by using reservoir drought index (RDI) and climate change scenarios

저수지 가뭄지수와 기후변화 시나리오를 이용한 우리나라 미래 농업가뭄 평가

  • Kim, Jin Uk (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Lee, Ji Wan (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong Joon (School of Civil and Environmental Engineering, Konkuk University)
  • 김진욱 (건국대학교 대학원 사회환경플랜트공학과) ;
  • 이지완 (건국대학교 대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2019.03.05
  • Accepted : 2019.04.17
  • Published : 2019.06.30

Abstract

The purpose of this study is to predict agricultural reservoir storage rate (RSR) in a month. This algorithm was developed by multiple linear regression model (MLRM) which included the past 3 months RSRs data and the future climate change scenarios. In order to improve use of predicted RSR, this study need the severe criteria in terms of drought. So, the predicted RSR was indexed as the 3 months reservoir drought index (RDI3) and then it was disaggregated into drought duration, severity, and intensity. For the future RSR estimation by climate change scenarios, the 6 RCP 8.5 scenarios of HadGEM2-ES, CESM1-BGC, MPI-ESM-MR, INM-CM4, FGOALS-s2, and HadGEM3-RA were used in three future evaluation periods (S1: 2011~2040, S2: 2041~2070, S3: 2071~2099). The future S3 period of HadGEM2-ES scenario which has the biggest increase in precipitation and temperature showed the largest decrease to 60.2% among the 6 scenarios compared to the historical RSR (1976~2005) 77.3%. In contrast, INM-CM4 scenario which has smallest changes in precipitation and temperature in S3 period showed the smallest decrease to 72.8%. For the CESM1-BGC and MPI-ESM-MR, FGOALS-s2, and HadGEM3-RA, the S3 period RSR showed 72.6%, 72.6%, 67.4%, and 64.5% decrease respectively. The future severe drought condition of RDI3 below -0.25 showed the increase trend for the number and severity up to -2.0 during S3 period.

본 연구의 목적은 농업용 저수지 저수율 예측을 위해 개발된 회귀식에 미래 기후변화 시나리오 및 3개월 기반의 농업용 저수지 저수율 자료 및 기상자료를 이용하여 미래 저수율을 예측하는 것이다. 예측된 저수율을 3개월 자료기반의 저수지 가뭄지수로 지수화하여 가뭄 지속기간, 심도 및 규모를 산정하고 미래 가뭄을 평가하였다. 극한사상의 추정을 위해 6개의 RCP 8.5 기후변화 시나리오(HadGEM2-ES, CESM1-BGC, MPI-ESM-MR, INM-CM4, FGOALS-s2, and HadGEM3-RA)를 3개의 미래 평가기간(S1: 2011~2040, S2: 2041~2070, S3: 2071~2099)으로 구분하여 미래 저수율을 산정하였다. 산정 결과, 강수량 및 기온의 상승이 가장 큰 HadGEM2-ES 시나리오에서의 미래 저수율이 6개의 시나리오 중 S3 기간에 평년 저수율(1976~2005 기간, 77.3%)보다 가장 큰 폭으로 감소한 60.2%로 나타났다. 강수량 및 기온의 상승이 가장 적은 INM-CM4 시나리오의 저수율은 S3에서 72.8%로 가장 적게 감소했으며, CESM1-BGC, MPI-ESM-MR, FGOALS-s2, 및 HadGEM3-RA 시나리오에서 S3 구간 미래저수율은 각각 72.6%, 72.6%, 67.4%, 64.5%로 감소하였다. 미래 저수율을 이용해 RDI를 산정하고 절단수준 -0.25 이하의 심한 가뭄 경향성이 S3 기간으로 갈수록 빈번하게 나타나며 심도가 -2.0까지 나타났다.

Keywords

SJOHCI_2019_v52n6_381_f0001.png 이미지

Fig. 1. Study area and flow chart

SJOHCI_2019_v52n6_381_f0002.png 이미지

Fig. 2. Run’s theory

SJOHCI_2019_v52n6_381_f0003.png 이미지

Fig. 3. Changes in precipitation, maximum and minimum temperature due to climate change scenarios

SJOHCI_2019_v52n6_381_f0004.png 이미지

Fig. 4. Distributions of RSR3 simulated continuously by scenario

SJOHCI_2019_v52n6_381_f0005.png 이미지

Fig. 5. Distribution of RSR3 with initial values fixed by scenario

SJOHCI_2019_v52n6_381_f0006.png 이미지

Fig. 6. Monthly distribution of future RDI3 by scenario

SJOHCI_2019_v52n6_381_f0007.png 이미지

Fig. 7. Drought events of HadGEM2-ES and INM-CM4 by RDI3 (WA: Watershed area, EV: Effective volume)

Table 1. RSR3 Regression coefficient

SJOHCI_2019_v52n6_381_t0001.png 이미지

Table 2. Annual average of precipitation and average temperature in 6-scenarios by future period

SJOHCI_2019_v52n6_381_t0002.png 이미지

Table 3. Changes in meteorological and RSR with extreme climate change scenario

SJOHCI_2019_v52n6_381_t0003.png 이미지

Table 4. Cumulative drought history through the national average RDI by duration

SJOHCI_2019_v52n6_381_t0004.png 이미지

References

  1. Ahn, S. R., Park, M. J., Park, G. A., and Kim, S. J. (2007). "The effect of meteorological factors on the temporal variation of agricultural reservoir storage." Journal of the Korean Society of Agricultural Engineers, Vol. 49, No. 4, pp. 3-12. https://doi.org/10.5389/KSAE.2007.49.4.003
  2. Chang, T. J. (1991). "Investigation of precipitation droughts by use of Kriging method." Journal of Irrigation and Darinage Engineering, ASCE, Vol. 117, No. 6, pp. 935-943. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:6(935)
  3. Gwak, Y. S., Cho, J. P., Jung, I. G., Kim, D. W., and Jang, S. M. (2018). "Projection of future changes in drought characteristics in Korea Peninsula using effective drought index." The Korean Society of Climate Change Research, Vol. 9, No. 1, pp. 31-45. https://doi.org/10.15531/ksccr.2018.9.1.31
  4. Katsavounidis, I., Jay Kuo, C.-C., and Zhang, Z. (1994). "A new initialization technique for generalized Lloyd iteration." IEEE Signal Processing Letters, Vol. 1, No. 10, pp. 144-146. https://doi.org/10.1109/97.329844
  5. Kim, B. S., Sung, J. H., Kang, H. S., and Cho, C. H. (2012). "Assessment of drought severity over South Korea using standardized precipitation evapo-transpiration index (SPEI)." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 887-900. https://doi.org/10.3741/JKWRA.2012.45.9.887
  6. Kim, B. S., Sung, J. H., Lee, B. H., and Kim, D. J. (2013). "Evaluation on the impact of extreme droughts in South Korea using the SPEI and RCP8.5 climate change scenario." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 2, pp. 97-109. https://doi.org/10.9798/KOSHAM.2013.13.2.097
  7. Kim, J. H., Lee, J. H., Park, M. J., and Joo, J. G. (2016). "Effect of climate change scenarios and regional climate models on the drought severity-duration-frequency analysis." Journal of Korean Society of Hazard Mitigation, Vol. 16, No. 2, pp. 351-361. https://doi.org/10.9798/KOSHAM.2016.16.2.351
  8. Kim, J. U., Jung, C. G., Lee, J. W., and Kim, S. J. (2018a). "Development of naive-bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data." Journal of Korea Water Resources Association, Vol. 51, No. 10, pp. 839-852. https://doi.org/10.3741/JKWRA.2018.51.10.839
  9. Kim, J. U., Kwon, W. T., and Byun, Y. H. (2015). "Monthly changes in temperature extremes over south korea based on observations and RCP8.5 scenario." Journal of Climate Change Research, Vol. 6, No. 2, pp. 61-72. https://doi.org/10.15531/ksccr.2015.6.2.61
  10. Kim, S. R., Jang, M. W., Kim, S. J., and Bae, S. J. (2017). "Spatial and temporal analysis of drought using the storage data of agricultural reservoirs in Chungnam province in 2015." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 2, pp. 29-36. https://doi.org/10.5389/KSAE.2017.59.2.029
  11. Kim, Y. W., Lee, J. W., and Kim, S. J. (2018b). "Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX." Journal of Korea Water Resources Association, Vol. 51, No. 10, pp. 905-916. https://doi.org/10.3741/JKWRA.2018.51.10.905
  12. Korea Meteorological Administration (KMA) (2018). Technical introduction of Weather and Earthquake See-At technology devleopment research project end task. Korea Meteorological Administration, pp. 202-206.
  13. Kwon, H. J., Park, H. J., Hong, D. O., and Kim, S. J. (2006). "A study on semi-distributed hydrologic drought assessment modifying SWSI." Journal of Korean Society of Civil Engineers, KSCE, Vol. 39. No. 8, pp. 645-658.
  14. Lee, J. H., Jeong, S. M., Kim, S. J., and Lee, M. H. (2006). "Development of drought monitoring system: I. Applicability of drought indices for quantitative drought monitoring." Journal of Korea Water Resources Association, Vol. 39, No. 9, pp. 787-800. https://doi.org/10.3741/JKWRA.2006.39.9.787
  15. Lee, J. T., Yun, S. H., and Park, M. E. (1995). "Relationships between seasonal duration of sunshine and air temperature in Korea." Korean Journal of Environmental Agriculture, Vol. 14, No. 2, pp. 155-162.
  16. Lee, J. W., Kim, J. U., Jung, C. G., and Kim, S. J. (2018). "Forecasting monthly agricultural reservoir storage and estimation of reservoir drought index (RDI) using meteorological data based multiple linear regression analysis." Journal of the Korean Association of Geographic Information Studies, Vol. 21, No. 3, pp. 19-34. https://doi.org/10.11108/kagis.2018.21.3.019
  17. Lee, Y. G., Jung, C. G., Cho, Y. H., and Kim, S. J. (2017). "Estimation of soil moisture using multiple linear regression model and COMS land surface temperature data." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 1, pp. 11-20. https://doi.org/10.5389/KSAE.2017.59.1.011
  18. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Preprints Eighth Conf on Applied Climatology Anaheim CA. Amer Meteor Soc., pp. 179-184.
  19. McKee, T. B., Doesken, N. J., and Kleist, J. (1995). "Drought monitoring with multiple time scales." Proceedings of the Ninth Conference on Applied Climatology. Amer Meteor Soc Boston, pp. 233-236.
  20. Nam, W. H., Choi, J. Y., Jang, M. W., and Hong, E. M. (2013). "Agricultural drought risk assessment using reservoir drought index." Journal of the Korean Society of Agricultural Engineers, Vol. 55, No. 3, pp. 41-49. https://doi.org/10.5389/KSAE.2013.55.3.041
  21. Nam, W. H., Wilhite, M., Hayes, D., and Svoboda, M. (2015). "Projection of temporal trends on drought characteristics using the standardized precipitation evapotranspiration index (SPEI) in South Korea." Vol. 57, No. 1, pp. 37-45. https://doi.org/10.5389/KSAE.2015.57.1.037
  22. Palmer, W. C. (1965). Meteorologic drought. Research Paper. No. 45, U.S. Weather Bureau, Washington, D.C., p. 58.
  23. Park, M. W., Kim, S. J., Kwon, H. J., Kim. P. S., Kang, S. M., and Lee, J. H. (2017). "Availability assessment of meteorological drought index for agricultural drought estimation in ungauged area of agricultural drought parameter." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 5, pp. 127-136. https://doi.org/10.5389/KSAE.2017.59.5.127
  24. Seo, S. B., Kim, Y. I., and Kim, Y. O. (2017). "Selecting climate change scenarios for hydrologic impact studies for Korea." Proceedings Korean Society of Civil Engineers 2018 Convention, pp. 106-107.
  25. Shafer, B. A., and Dezman, L. E. (1982). "Development of surface water supply index to assess the severity of drought condition in snowpack runoff areas." Proceedings of the Western Snow Conference, Colorado State University, Fort Collins, CO, pp. 164-175.
  26. Shin, E. C., and Lee, J. K. (2012). "Safety management improving way of small agricultural reservoir." Journal of Korean Geosynthetics Society, Vol. 12, No. 3, pp. 53-58. https://doi.org/10.12814/jkgss.2012.11.3.053
  27. Sohn, K. H., Bae, D. H., and Ahn, J. H. (2014). "Projection and analysis of drought according to future climate and hydrological information in Korea." Journal of Korea Water Resources Association, Vol. 47, No. 1, pp. 71-82. https://doi.org/10.3741/JKWRA.2014.47.1.71
  28. Song, J. H., Song, I. H., Kim, J. T., and Kang, M. S. (2015). "Simulation of agricultural water supply considering yearly variation of irrigation efficiency." Journal of Korea Water Resources Association, Vol. 48, No. 6, pp. 425-438. https://doi.org/10.3741/JKWRA.2015.48.6.425
  29. Thornton, P. E., and Running, S. W. (1999). "An improved algorithm for estimating incident daily solar radiation from measurement of temperature." Humidity, and Precipitation, Agricultural and Forest Meteorology, No. 93, pp. 211-218.
  30. Yevjevich, V. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Colorado State University Hydrology Paper 23, pp. 1-18.
  31. Yoo, C. S., Kim, D. H., and Kim, S. D. (2006). "Evaluation of agricultural drought prevention ability based on EOF analysis and multi-variate time series model." Journal of Korea Water Resources Association, Vol. 39, No. 7, pp. 617-626. https://doi.org/10.3741/JKWRA.2006.39.7.617
  32. Yoo, J. W., Shin, J.Y., Kim, D. K., and Kim, T. W. (2013). "Drought risk analysis using stochastic rainfall generation model and copula functions." Journal of Korea Water Resources Association, Vol. 46, No. 4, pp. 425-437. https://doi.org/10.3741/JKWRA.2013.46.4.425