CHARACTERIZING FUNCTIONS FIXED BY A WEIGHTED BEREZIN TRANSFORM IN THE BIDISC

Jaesung Lee

ABSTRACT. For c > -1, let ν_c denote a weighted radial measure on \mathbb{C} normalized so that $\nu_c(D) = 1$. For $c_1, c_2 > -1$ and $f \in L^1(D^2, \nu_{c_1} \times \nu_{c_2})$, we define the weighted Berezin transform $B_{c_1,c_2}f$ on D^2 by

$$\left(B_{c_1,c_2}\right)\!f(z,w) = \int_D \int_D f\!\left(\varphi_z(x),\varphi_w(y)\right)\,d\nu_{c_1}(x)d\nu_{c_2}(y).$$

This paper is about the space $M^p_{c_1,c_2}$ of function $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ satisfying $B_{c_1,c_2}f = f$ for $1 \leq p < \infty$. We find the identity operator on $M^p_{c_1,c_2}$ by using invariant Laplacians and we characterize some special type of functions in $M^p_{c_1,c_2}$.

1. Introduction

Let D be the unit dics of \mathbb{C} and ν be the Lebesgue measure on \mathbb{C} normalized to $\nu(D) = 1$. For c > -1, we define a measure ν_c by $d\nu_c(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} d\nu(z)$ so that $\nu_c(D) = 1$. If $u \in L^1(D, \nu_c)$ and $z \in D$, we define $T_c u$ the weighted Berezin transform of u by

$$(T_c u)(z) = \int_D (u \circ \varphi_z) \ d\nu_c,$$

where $\varphi_a \in \operatorname{Aut}(D)$ is defined by $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$.

Received March 1, 2018. Revised June 3, 2019. Accepted June 5, 2019.

²⁰¹⁰ Mathematics Subject Classification: 32A70, 47G10.

Key words and phrases: weighted Berezin transform, invariant Laplacian, joint eigenfunction.

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

For $c_1, c_2 > -1$ and $f \in L^1(D^2, \nu_{c_1} \times \nu_{c_2})$, we define the weighted Berezin transform $B_{c_1,c_2}f$ on D^2 by

$$(B_{c_1,c_2})f(z,w) = \int_D \int_D f(\varphi_z(x), \varphi_w(y)) \ d\nu_{c_1}(x) d\nu_{c_2}(y).$$

A function $f \in C^2(D)$ with $\Delta_1 f = \Delta_2 f = 0$ $(i, e, harmonic in each variable) is called 2-harmonic. If <math>f \in L^1(D^2, \nu_{c_1} \times \nu_{c_2})$ is 2-harmonic, then we can easily see that $B_{c_1,c_2}f = f$ for every $c_1, c_2 > -1$. Conversely, Furstenberg ([3]) proved that a function $f \in L^{\infty}(D^2)$ satisfying $B_{c_1,c_2}f = f$ for some $c_1, c_2 > -1$ has to be 2-harmonic, whose complete analytic proof is given in [5]. The author([4]) proved that for every $1 \leq p < \infty$ and $c_1, c_2 > -1$, a function $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ satisfying $B_{c_1,c_2}f = f$ needs not be 2-harmonic. Indeed, for every $1 \leq p < \infty$ and $c_1, c_2 > -1$, there exist uncountably many joint eigenfunctions $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ of invariant Laplacians satisfying $B_{c_1,c_2}f = f$ (theorem 1.1 of [4]).

This paper is about the space $M^p_{c_1,c_2}$ of function $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ satisfying $B_{c_1,c_2}f = f$ for $1 \leq p < \infty$ and $c_1,c_2 > -1$. We express the identity operator on $M^p_{c_1,c_2}$ as an entire function of invariant Laplacians. Then we find the joint spectrum of invariant Laplacians in an attempt to express $M^p_{c_1,c_2}$ by using spectral decompositions. Our original aim is to prove that the space $M^p_{c_1,c_2}$ is generated by the joint eigenfunctions of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$. However, we are unable to provide the entire proof so that we leave it as a conjecture. In this paper, instead, we prove the conjecture for $f \in M^p_{c_1,c_2}$ of the form f(z,w) = u(z)v(w).

In Section 2, we mention some preliminaries on eigenspaces and eigenvalues of invariant Laplacians, most of which have appeared in [4] and [7]. In Section 3, we mention some important properties of the operator the operator $B_{k+c_1,\ell+c_2}$ where k,ℓ are non-negative integers. In Section 4, we suggest a conjecture on M_{c_1,c_2}^p and provide related propositions.

2. Preliminaries

Here we mention some preliminaries on function theories in the bidisc, related with eigenspaces and eigenvalues of invariant Laplacians. For $u \in C^2(D)$, $\tilde{\Delta}u$ the invariant Laplacian of u is defined by $\tilde{\Delta}u(z) = (1-|z|^2)^2 \Delta u(z)$. Acting on $f \in C^2(D^2)$, $\tilde{\Delta}_1$, $\tilde{\Delta}_2$ are the invariant Laplacians with respect to the first and second variable respectively, such as

 $(\tilde{\Delta}_1 f)(z,w) = (1-|z|^2)^2(\Delta_1 f)(z,w)$. For $\lambda, \mu \in \mathbb{C}$, we define the joint eigenspace $X_{\lambda,\mu}$ by

$$X_{\lambda,\mu} = \{ f \in C^2(D^2) \mid \tilde{\Delta}_1 f = \lambda f \text{ and } \tilde{\Delta}_2 f = \mu f \}.$$

It is known that (section 3 of [4]) for $c_1, c_2 > -1$ and $1 \le p < \infty$,

 $L^p(D^2, \nu_{c_1} \times \nu_{c_2}) \cap X_{\lambda,\mu} \neq \{0\}$ if and only if $\alpha \in \Sigma_{c_1,p}$ and $\beta \in \Sigma_{c_2,p}$ where $\alpha, \beta \in \mathbb{C}$ satisfy $\lambda = -4\alpha(1-\alpha)$, $\mu = -4\beta(1-\beta)$ and

$$\Sigma_{c,p} = \left\{ \alpha \in \mathbb{C} \mid -\frac{c+1}{p} < \operatorname{Re} \alpha < 1 + \frac{c+1}{p} \right\}.$$

The key idea of theorem 1.1 of [4] is that $L^p(D^2, \nu_{c_1} \times \nu_{c_2}) \cap X_{\lambda,\mu}$ is also an eigenspace of B_{c_1,c_2} with eigenvalue

$$\frac{\Gamma(c_1+1+\alpha)\Gamma(c_1+2-\alpha)}{\Gamma(c_1+1)\Gamma(c_1+2)} \frac{\Gamma(c_2+1+\beta)\Gamma(c_2+2-\beta)}{\Gamma(c_2+1)\Gamma(c_2+2)},$$

and there exist uncountably many pairs of $(\alpha, \beta) \in \Sigma_{c_1,p} \times \Sigma_{c_2,p}$ satisfying

$$\frac{\Gamma(c_1 + 1 + \alpha)\Gamma(c_1 + 2 - \alpha)}{\Gamma(c_1 + 1)\Gamma(c_1 + 2)} \frac{\Gamma(c_2 + 1 + \beta)\Gamma(c_2 + 2 - \beta)}{\Gamma(c_2 + 1)\Gamma(c_2 + 2)} = 1.$$

Moreover, if $\lambda = -4\alpha(1-\alpha)$ then we get

$$\frac{\Gamma(c_1 + 1 + \alpha)\Gamma(c_1 + 2 - \alpha)}{\Gamma(c_1 + 1)\Gamma(c_1 + 2)} = \frac{1}{G_{c_1}(\lambda)},$$

where

$$G_c(z) = \prod_{i=1}^{\infty} \left(1 + \frac{z}{(j+c)(j+c+1)} \right)$$

is an entire function.

3. the operator $B_{k+c_1,\ell+c_2}$

DEFINITION 3.1. For $f \in L^1(D^2, \nu_{c_1} \times \nu_{c_2})$ and $k, \ell = 0, 1, 2, \cdots$, we define the operator $B_{k+c_1,\ell+c_2}$ on $L^1(D^2, \nu_{c_1} \times \nu_{c_2})$ by the obvious way such as

$$(B_{k+c_1,\ell+c_2}f)(z,w) = (k+1)(\ell+1) \cdot \int_{D^2} (1-|x|^2)^k (1-|y|^2)^\ell f(\varphi_z(x),\varphi_w(y)) d\nu_{c_1}(x)d\nu_{c_2}(y).$$

Just the same way as the proof of Proposition 3.2 of [4], it is easy to see that

$$(B_{k+c_1,\ell+c_2}f)\circ\psi = B_{k+c_1,\ell+c_2}(f\circ\psi)$$

for $k,\ell \geq 0$, $\psi \in Aut(D^2)$ and $f \in L^1(D^2,\nu_{c_1} \times \nu_{c_2})$. Also, the operators B_{c_1,c_2} and $B_{k+c_1,\ell+c_2}$ commute on $L^1(D^2,\nu_{c_1} \times \nu_{c_2})$.

The following lemma comes directly from Proposion 2.1 and Proposion 2.2 of [6].

LEMMA 3.2. For $k, \ell \geq 0$, $B_{k+c_1,\ell+c_2}$ is a bounded operator on $L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ when p > 1. And for $k, \ell > 0$, $B_{k+c_1,\ell+c_2}$ is a bounded linear operator on $L^1(D^2, \nu_{c_1} \times \nu_{c_2})$.

Using Lemma 3.2, we get the following proposition.

PROPOSITION 3.3. If $1 \le p < \infty$, then for every $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ we have

$$\lim_{n \to \infty} \|f - B_{n+c_1, n+c_2} f\|_p = 0.$$

Proof. By Proposition 2.2 of [6], we get $\lim_{n\to\infty} ||B_{n+c_1,n+c_2}|| = 1$ on $L^1(D^2, \nu_{c_1} \times \nu_{c_2})$.

Since $B_{n+c_1,n+c_2}$ is a contraction which fixes 2-harmonic functions on $L^{\infty}(D^2)$, an interpolation theorem gives $\lim_{n\to\infty} \|B_{n+c_1,n+c_2}\| = 1$ on $L^p(D^2,\nu_{c_1}\times\nu_{c_2})$ for $1\leq p<\infty$.

If $g \in C(\overline{D^2})$, then Definition 2.1 shows that $(B_{n+c_1,n+c_2}g)(z,w) \to g(z,w)$ for every $z,w \in D$ as $n \to \infty$. Hence by dominated convergence theorem, $\lim_{n\to\infty} \|g - B_{n+c_1,n+c_2}g\|_p = 0$.

If $1 \leq p < \infty$ and $f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2})$ then there is a sequence $\{g_k\}$ in $C(\overline{D^2})$ such that $||f - g_k||_p \to 0$ as $k \to \infty$. Hence, we get the proof from the inequality

$$||f - B_{n+c_1,n+c_2}f||_p \le ||f - g_k||_p + ||g_k - B_{n+c_1,n+c_2}g_k||_p + ||B_{n+c_1,n+c_2}(g_k - f)||_p.$$

The following lemma directly comes from Proposition 2.4 of [1].

LEMMA 3.4. For $k,\ell \geq 0, \ \psi \in Aut(D^2)$, and $f \in L^1(D^2,\nu_{c_1} \times \nu_{c_2})$ we get

$$\tilde{\Delta}_1 B_{k+c_1,\ell+c_2} f = 4(k+1+c_1)(k+2+c_1) \left(B_{k+c_1,\ell+c_2} f - B_{k+1+c_1,\ell+c_2} f \right)$$

$$\tilde{\Delta}_2 B_{k+c_1,\ell+c_2} f = 4(\ell+1+c_2)(\ell+2+c_2) \left(B_{k+c_1,\ell+c_2} f - B_{k+c_1,\ell+1+c_2} f \right)$$

and

$$B_{k+c_1,\ell+c_2}f = G_{k,c_1}(\tilde{\Delta}_1)G_{\ell,c_2}(\tilde{\Delta}_2)B_{c_1,c_2}f$$

where

$$G_{m,c}(z) = \prod_{i=1}^{m} \left(1 - \frac{z}{4(c+i)(c+i+1)} \right)$$

is an entire function.

4. The space M_{c_1,c_2}^p

In this section, for $c_1, c_2 > -1$ and $1 \le p < \infty$, we make an attempt to characterize

$$M_{c_1,c_2}^p = \{ f \in L^p(D^2, \nu_{c_1} \times \nu_{c_2}) : B_{c_1,c_2}f = f \}$$

which is a Banach space of real analytic functions. The entire function

$$G_c(z) = \prod_{j=1}^{\infty} \left(1 + \frac{z}{(j+c)(j+c+1)} \right)$$

mentioned at the end of Section 2 plays an important role.

PROPOSITION 4.1. $G_{c_1}(\tilde{\Delta}_1)G_{c_2}(\tilde{\Delta}_2)$ is the identity operator on M_{c_1,c_2}^p .

Proof. By Lemma 3.4, for $f \in M^p_{c_1,c_2}$ we get

$$\tilde{\Delta}_1 f = \tilde{\Delta}_1 B_{c_1,c_2} f = 4(1+c_1)(2+c_1)(f-B_{1+c_1,c_2} f).$$

Since B_{1+c_1,c_2} is bounded on $L^p(D^2)$ and commutes with B_{c_1,c_2} ,

$$B_{c_1,c_2}(\tilde{\Delta}_1 f) = 4(1+c_1)(2+c_1)(B_{c_1,c_2}f - B_{c_1,c_2}B_{1+c_1,c_2}f)$$

$$= 4(1+c_1)(2+c_1)(f - B_{1+c_1,c_2}B_{c_1,c_2}f)$$

$$= 4(1+c_1)(2+c_1)(f - B_{1+c_1,c_2}f) = \tilde{\Delta}_1 f$$

Likewise we get $B_{c_1,c_2}(\tilde{\Delta}_2 f) = \tilde{\Delta}_2 f$ for $f \in M^p_{c_1,c_2}$. Hence $\tilde{\Delta}_1, \tilde{\Delta}_2$ are bounded operators on $M^p_{c_1,c_2}$. From Lemma 3.4, for $f \in M^p_{c_1,c_2}$ and $n \in \mathbb{N}$,

$$B_{n+c_1,n+c_2}f = G_{n,c_1}(\tilde{\Delta}_1)G_{n,c_2}(\tilde{\Delta}_2)B_{c_1,c_2}f.$$

For c > -1, the function

$$G_c(z) = \prod_{i=1}^{\infty} \left(1 + \frac{z}{(j+c)(j+c+1)} \right)$$

is entire, so that we have

$$G_{n,c_1}(\tilde{\Delta}_1) \rightarrow G_{c_1}(\tilde{\Delta}_1)$$
 and $G_{n,c_2}(\tilde{\Delta}_2) \rightarrow G_{c_2}(\tilde{\Delta}_2)$

in the operator norm since $G_{n,c_1} \to G_{c_1}$ and $G_{n,c_2} \to G_{c_2}$ uniformly on compact set of \mathbb{C} .

Now take $n \to \infty$, by Proposition 3.3 we get

$$f = G_{c_1}(\tilde{\Delta}_1)G_{c_2}(\tilde{\Delta}_2)f.$$

Therefore,
$$G_{c_1}(\tilde{\Delta}_1)G_{c_2}(\tilde{\Delta}_2) = I$$
 on M_{c_1,c_2}^p .

On the other hand, from Section 2 we get

$$G_c(\lambda) = \frac{\Gamma(c+1)\Gamma(c+2)}{\Gamma(c+1+\alpha)\Gamma(c+2-\alpha)}$$

if c > -1 and $\lambda = -4\alpha(1-\alpha)$. Hence, if we define

$$\Omega_{c,p} = \left\{ \lambda = -4\alpha(1-\alpha) \mid -\frac{c+1}{p} < \operatorname{Re} \alpha < 1 + \frac{c+1}{p} \right\},\,$$

then we have

 $L^p(D^2, \nu_{c_1} \times \nu_{c_2}) \cap X_{\lambda,\mu} \neq \{0\}$ if and only if $\lambda \in \Omega_{c_1,p}$ and $\mu \in \Omega_{c_2,p}$

Therefore, the set

$$E = \{(\lambda, \mu) \in \Omega_{c_1, p} \times \Omega_{c_2, p} \mid G_{c_1}(\lambda)G_{c_2}(\mu) = 1\}$$

is the set of all joint eigenvalues of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$ on $M^p_{c_1,c_2}$. Since $G_{c_1}(\tilde{\Delta}_1)G_{c_2}(\tilde{\Delta}_2) = I$ on $M^p_{c_1,c_2}$, by the holomorphic functional calculus (3.11 of [2]),

$$1 = \sigma(G_{c_1}(\tilde{\Delta}_1)G_{c_2}(\tilde{\Delta}_2)) = \{G_{c_1}(\lambda)G_{c_2}(\mu) \mid (\lambda,\mu) \in \sigma(\tilde{\Delta}_1,\tilde{\Delta}_2)\}.$$

Therefore, we get the following proposition.

PROPOSITION 4.2. The joint spectrum $\sigma(\tilde{\Delta}_1, \tilde{\Delta}_2)$ of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$ on $M^p_{c_1, c_2}$ is

$$\sigma(\tilde{\Delta}_1, \tilde{\Delta}_2) = \{(\lambda, \mu) \in \bar{\Omega}_{c_1, p} \times \bar{\Omega}_{c_2, p} \mid G_{c_1}(\lambda) G_{c_2}(\mu) = 1\}.$$

In view of Proposition 4.2 we may conjecture that the space $M^p_{c_1,c_2}$ is generated by the joint eigenfunctions of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$ in $M^p_{c_1,c_2}$. But this conjecture is very hard for us to prove partly because the operators $\tilde{\Delta}_1, \tilde{\Delta}_2$ are not normal so that any type of spectral decomposition of $M^p_{c_1,c_2}$ with respect to $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$ is unavailable. The author hope to return to this problem in the future work.

Here instead, we will prove the conjecture for $f \in M^p_{c_1,c_2}$ of the form f(z,w) = u(z)v(w).

PROPOSITION 4.3. Given $1 \leq p < \infty$ and $c_1, c_2 > -1$, if $f(z, w) = u(z)v(w) \in M^p_{c_1,c_2}$, then then f can be written as a finite sum of joint eigenfunctions of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$.

Proof. If f(z, w) = u(z)v(w) for some $u \in L^p(D, \nu_{c_1})$ and $v \in L^p(D, \nu_{c_2})$, then

$$(B_{c_1,c_2}f)(z,w) = \int_D u(\varphi_z(x)) d\nu_{c_1}(x) \int_D v(\varphi_w(y)) d\nu_{c_2}(y)$$

= $(T_{c_1}u)(z) (T_{c_2}v)(w).$

Fix $1 \leq p < \infty$ and $c_1, c_2 > -1$, then let H be the set of all $r \in \mathbb{C} \setminus \{0\}$ such that both $\{u \in L^p(D, \nu_{c_1}) \mid T_{c_1}u = ru\}$ and $\{v \in L^p(D, \nu_{c_2}) \mid T_{c_2}v = \frac{1}{r}v\}$ are non-empty.

For $s, t \in H$ let us define the space

$$K_s^1 = \{u \in L^p(D, \nu_{c_1}) \mid T_{c_1}u = su\} \text{ and } K_t^2 = \{u \in L^p(D, \nu_{c_2}) \mid T_{c_2}u = tu\}.$$

Then, for $f = uv \in M^p_{c_1,c_2}$ there exists an $r \in H$, such that $u \in K^1_r$ and $v \in K^2_{1/r}$.

Just as in Lemma 3.4 and Proposion 4.1, for $r \in H$ we have the following :

- (1) $\tilde{\Delta}$ is a bounded operator on K_r^1 .
- (2) $rG_{c_1}(\tilde{\Delta})$ is the identity operator on K_r^1 .
- (3) The set $\{\lambda \in \Omega_{c_1,p} \mid G_{c_1}(\lambda) = \frac{1}{r}\}$ is the set of all eigenvalues of $\tilde{\Delta}$ on K_r^1 .

Moreover, by Proposition 3.7 (d) of [1], $\{\lambda \in \Omega_{c_1,p} \mid G_{c_1}(\lambda) = \frac{1}{r}\}$ is a finite set.

Therefore, if

$$\{\lambda \in \Omega_{c_1,p} \mid G_{c_1}(\lambda) = \frac{1}{r}\} = \{\lambda_1, \dots, \lambda_N\}$$

and

$$Q(z) = \prod_{i=1}^{N} (z - \lambda_i),$$

then $Q(\tilde{\Delta}) = 0$ on K_r^1 . Hence by Lemma 4.1 of [1], every $u \in K_r^1$ is a sum

$$u = u_{\lambda_1} + \cdots + u_{\lambda_N},$$

where $u_{\lambda_i} \in L^p(D, \nu_{c_1})$ satisfies $\tilde{\Delta}u_{\lambda_i} = \lambda_i u_{\lambda_i}$ for $1 \leq i \leq N$. By the same way every $v \in K_{1/r}^2$ is a sum

$$v = v_{\mu_1} + \cdots + v_{\mu_m},$$

where $\{\mu_1, \dots, \mu_m\} = \{ \mu \in \Omega_{c_2,p} \mid G_{c_2}(\mu) = r \}$ and $v_{\mu_j} \in L^p(D, \nu_{c_2})$ satisfies

$$\tilde{\Delta}v_{\mu_j} = \mu_j v_{\mu_j} \text{ for } 1 \le j \le m.$$

Hence we can write f as

$$f(z,w) = (u_{\lambda_1}(z) + \cdots + u_{\lambda_N}(z)) (v_{\mu_1}(w) + \cdots + v_{\mu_m}(w))$$

which is a finite sum of joint eigenfunctions.

References

- P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) (2), 380-397.
- [2] J.P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973.
- [3] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
- [4] J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493.
- [5] J. Lee, Some properties of the Berezin transform in the bidisc, Comm. Korean Math. Soc. 32 (3) (2017), 779–787.
- [6] J. Lee, Some properties of the weighted Berezin transform in the unit disc and bidisc, Global Journal of Pure and Applied Mathematics, 14 (2) (2018), 275–283
- [7] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York Inc., 1980.

Jaesung Lee

Department of Mathematics Sogang University Seoul 121-742, Korea

E-mail: jalee@sogang.ac.kr