References
- H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar 53 (3-4) (1989), 339-346. https://doi.org/10.1007/BF01953371
- G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
- M. Bresar, On the distance of the composition of the derivations to the generalized derivations, Glasgow Math. J. 33 (1) (1991), 89-93. https://doi.org/10.1017/S0017089500008077
- A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Information Science 176 (2006), 3472-3489. https://doi.org/10.1016/j.ins.2006.02.011
- F. Karacal, On the direct decomposability of strong negations and simplication operations on product lattices, Information Science 176 (2006), 3011-3025. https://doi.org/10.1016/j.ins.2005.12.010
- K. Kaya, Prime rings with a derivations, Bull. Master. Sci.Eng 16 (1987), 63-71.
- L. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
- U. M. Swamy and G. C. Rao, Almost Distributive lattices, J. Aust. Math. Soc.(Series A) 31 (1981), 77-91. https://doi.org/10.1017/S1446788700018498
- X. L. Xin, T. Y. Li and J. H. Lu, On the derivations of lattices, Information Sci., 178 (2) (2008), 307-316. https://doi.org/10.1016/j.ins.2007.08.018
Cited by
-
On
$ \alpha $ -Multiplier on Almost Distributive Lattices vol.2021, 2019, https://doi.org/10.1155/2021/5562828