DOI QR코드

DOI QR Code

단양 지질공원 구담봉-사인암 지질명소 화강암의 SHRIMP 저어콘 U-Pb 연령과 지구화학

SHRIMP Zircon U-Pb Age and Geochemistry of Granites in the Gudambong-Sainam Geosites, Danyang Geopark

  • 엄현우 (충북대학교 자연과학대학 지구환경과학과) ;
  • 김윤섭 (충북대학교 자연과학대학 지구환경과학과) ;
  • 정원석 (충북대학교 자연과학대학 지구환경과학과) ;
  • 부이빈하우 (충북대학교 자연과학대학 지구환경과학과)
  • Aum, Hyun Woo (Department of Earth & Environmental Sciences, Chungbuk National University) ;
  • Kim, Yoonsup (Department of Earth & Environmental Sciences, Chungbuk National University) ;
  • Cheong, Wonseok (Department of Earth & Environmental Sciences, Chungbuk National University) ;
  • Hau, Bui Vinh (Department of Earth & Environmental Sciences, Chungbuk National University)
  • 투고 : 2019.06.10
  • 심사 : 2019.06.24
  • 발행 : 2019.06.30

초록

단양 지질공원 지질명소 구담봉과 사인암을 구성하고 있는 화강암에 대한 저어콘 U-Pb 연령측정과 전암 지구화학 성분 분석을 수행하였다. 이들 화강암은 단양군의 서부와 남부지역에서 산출하며, 영월층군과 태백층군의 퇴적암을 각각 관입하고 있다. 고분해능 이차이온질량분석기를 사용하여 측정한 구담봉과 사인암화강암의 저어콘 U-Pb 동위원소 성분은 각각 $90.4{\pm}0.5Ma(t{\sigma})$$90.0{\pm}1.5Ma(t{\sigma})$ 백악기 관입 연령을 정의한다. 두 화강암 시료의 지구화학 성분 분석 결과는 전형적인 A-타입 화강암의 특성을 나타내며, 불국사 조산운동 후기 또는 비조산대에서 형성된 것으로 해석된다. 구담봉과 사임암 화강암 시료의 저어콘 연령과 지구화학적 특성은 기존 보고된 백악기 무암사 및 월악산 화강암체의 결과와 일치한다.

We carried out the sensitive high resolution ion microprobe zircon U-Pb age dating and whole rock geochemical analysis of granites in the Gudambong and Sainam geosites, Danyang Geopark. The granites crop out in the western and southern parts of Danyang County, and intruded sedimentary successions of the Yeongweol and Taebaek Groups, respectively. The U-Pb isotopic compositions of zircon from the Gudambong and Sainam granite samples yielded the Cretaceous intrusion ages of $90.4{\pm}0.5Ma(t{\sigma})$ and $90.0{\pm}1.5Ma(t{\sigma})$, respectively. The major and trace elements compositions of the samples showed an affinity of typical A-type granite, indicating their petrogenesis during the late stage of the Bulguksa orogeny or a tectonic dormancy. The geochronologic and geochemical results are identical to those of granites previously reported from the Cretaceous Muamsa and Wolaksan suites.

키워드

HGOSBQ_2019_v28n2_143_f0001.png 이미지

Fig. 3. Cathodoluminescence images of zircon from (a) Gudambong and (b) Sainam. Spot numbers and apparent 206Pb/238U ages in Table 2 are shown in each image. Ellipse denotes the analytical spot.

HGOSBQ_2019_v28n2_143_f0002.png 이미지

Fig. 4. Tera-Wasserburg plots and weighted mean 206Pb/238U ages of (a, b) Gudambong and (c, d) Sainam sample, respectively. Error ellipses of data points in Tera-Wasserburg plots are at 95% confidence level.

HGOSBQ_2019_v28n2_143_f0003.png 이미지

Fig. 7. Tectonic discrimination diagrams based on (a) Rb vs. Y+Nb (b) Nb vs. Y, (c) Rb vs. Yb+Ta, and (d) Ta vs. Yb diagrams (Pearce et al., 1984) together with compiled data of the Muamsa, Weolaksan and Sokrisan granites (Lee et al., 2010).

HGOSBQ_2019_v28n2_143_f0004.png 이미지

Fig. 1. (a) Tectonic map of the south of Korea showing the distribution of granites. (b) Geologic map of the Danyang area with sample locations modified from Won and Lee (1967).

HGOSBQ_2019_v28n2_143_f0005.png 이미지

Fig. 2. (a, b) Landscape photographs of Gudambong and Sainam. (c, d) Thick section and outcrop photogrphs of the Gudambong and Sainam granite samples, respectively. (e, f) Photomicrographs of the Gudambong and Sainam samples under cross-polarized light, respectively.

HGOSBQ_2019_v28n2_143_f0006.png 이미지

Fig. 5. (a) TAS diagram (Irvine and Baragar, 1971; Wilson, 1989). (b) A/NK [molar ratio Al2O3/(Na2O+K2O)] vs. A/CNK [molar ratio Al2O3/(CaO+Na2O+K2O)] diagram (Maniar and Piccoli, 1989). (c) Chondrite-normalized rare earth element (REE) variation diagram (Sun and McDonough, 1989). (d) Primitive mantle-normailized spider diagram (McDonough and Sun, 1995). Grey areas in each diagram represent compilation of geochemical data from the Muamsa, Weolaksan and Sokrisan granites (Lee et al., 2010).

HGOSBQ_2019_v28n2_143_f0007.png 이미지

Fig. 6. (a) R1-R2 diagram (dashed lines; Batchelor and Bowden, 1985) and rock classification diagram (solid lines; De la Roche et al., 1980). (b) SiO2 vs. FeOt/MgO diagram (after Whalen et al.,1987; Wang et al., 2004). (c) 10000xGa/Al vs. FeOt plots of A-type granite (Whalen et al., 1987), (d) Zr+Nb+Ce+Y vs. (K2O+Na2O)/CaO of A-type granite (Whalen et al., 1987). Abbreviations: FG, fractionated felsic granite; and OGT, unfractionated M-, I-, S-type granites.

Table 2. Major and trace element compositions of the Gudambong and Sainam granite samples

HGOSBQ_2019_v28n2_143_t0001.png 이미지

Table 1. U–Th-Pb isotope compositions of zircons

HGOSBQ_2019_v28n2_143_t0002.png 이미지

Table 1. Continued

HGOSBQ_2019_v28n2_143_t0003.png 이미지

참고문헌

  1. Batchelor, R. A. and Bowden, P., 1985, Petrogenetic interpretation of granitoid rock series using multicationic parameters, Chemical Geology, 48, 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
  2. Cheong, C.-S., Chang, H.-W., 1996a. Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea: a preliminary report. Economic and Environmental Geology 29, 483-493 (in Korean with English abstract).
  3. Cheong, C.-S., Chang, H.-W., 1996b. Tectono-magmatism, - metamorphism, and - mineralization of the central Ogcheon belt, Korea (I): Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Journal of Geological Society of Korea 32, 91-116 (in Korean with English abstract).
  4. Cheong, C.-S., Kwon, S.-T. and Sagong, H., 2002. Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. Island Arc, 11, 25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  5. Cheong, C.-S. and Kim, N., 2012, Review of Radiometric Ages for Phanerozoic Granitoids in southern Korean Peninsula, Journal of the Petrological Society of Korea, 21, 173-192 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.173
  6. Cheong, W., Cho, M. and Kim, Y., 2013, An efficient method for zircon separation using the gold pan. Journal of the Petrological Society of Korea, 22, 63-70 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2013.22.1.063
  7. Cho, K.-M. and Jwa, Y.-J., 2005, Study on the Source Area of the Stones from Stone-cultural Properties -Geomorphological and Petrological Approach for the Iksan Area-Journal of the Petrological Society of Korea, 14, 24-37 (in Korean with English abstrac).
  8. Cho, D.-L., Lee, S. R. and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indonesian) orogeny in the Ogcheon belt, South Korea: occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105, 191-200. https://doi.org/10.1016/j.lithos.2008.03.007
  9. Choi, S.-G., Ryu, I.-C., Pak, S. J., Wee, S.-M., Kim, C. S. and Park, M.-E., 2005, Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geology Review, 26, 115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  10. Choie, M. G., Lee, C. H., Jo, Y. H., 2015, Interpretation of Provenance and Transportation Process for Bakseok of Geunjeongjeon Hall in Gyeongbokgung Palace, Korea. Journal of the Petrological Society of Korea, 24, 181-191 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2015.24.3.181
  11. Chough, S. K., 2013, Geology and Sedimentary of the Korean Peninsula. Elsevier Insight, Elsevier, 363p.
  12. Chough, S. K., Kwon, S.-T., Ree, J.-H. and Choi, D. K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth Science Review, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  13. Claoue-Long, J. C., Compston, W., Roberts, J., and Fanning C. M, 1995, Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology, Time Scales, and Global Stratigraphic Correlation (eds. W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol), pp. 3-21. Special Publication 54. Society for Sedimentary Geology.
  14. De La Roche, H., Leterrier, J., Grandclaude, P., and Marchal, M., 1980, A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses-its relationships with current nomenclature. Chemical Geology, 29, 183-210. https://doi.org/10.1016/0009-2541(80)90020-0
  15. Irvine, T. N. and Baragar, W. R. A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  16. Kim, C.-B., Chang, H.-W. and Turek, A., 2003, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. Island Arc, 11, 25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  17. Kim, K. H. and Shin, Y. S., 1990, Petrochemistry of the Granitic Rocks in the Chungju, Weolaksan and Jecheon Granitic Batholiths. Journal of Korean Institute of Mining Geology, 23, 245-259 (in Korean with English abstract).
  18. Kim, J., Jo, Y. H., and Lee, C. H., 2013, Material and Deterioration Characteristic Analysis for Stone Sculptures in Gyeongbokgung Royal Palace, Seoul. Journal of the Korean Conservation Science for Cultural Properties, 29(4), 407-420.
  19. Kim, S. W., Oh, C. W., Hyodo, H., Itaya, T., Liou, J.G., 2005. Metamorphic evolution of the Southwest Okcheon metamorphic belt in South Korea and its regional tectonic implications. International Geology Review 47, 344-370. https://doi.org/10.2747/0020-6814.47.4.344
  20. Lee, S. G., Shin, S. C., Kim,. K. H., Lee, T., Koh, H. and Song, Y. S, 2010, Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, 17, 87-101 https://doi.org/10.1016/j.gr.2009.04.012
  21. Ludwig, K. R., 2008, User's manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley, CA, Berkeley Geochronology Center Special Publication, 4, 77p.
  22. Ludwig, K. R., 2009, SQUID 2: a user's manual. Berkeley, CA, Berkeley Geochronology Center Special Publication, No. 2, 100p.
  23. Maniar, P. D. and Piccoli, P. M., 1989, Tectonic discrimination of granitoids. Geological Society of American Bulletin 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  24. McDonough, W. F. and Sun, S. S., 1995, The composition of the Earth. Chemical Geology 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  25. Oh, C. W., Krishnan, S., Kim, S. W. and Kwon, Y. W., 2006. Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-Odesan collision belt in South Korea. Gondwana Research, 9, 95-105. https://doi.org/10.1016/j.gr.2005.06.005
  26. Paces, J. B. and Miller, J. D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98, 13997-14013. https://doi.org/10.1029/93JB01159
  27. Park, H. I., Lee, S. M., Lee, M. S. and Kim, S. J., 1981, A study of the genesis of the metallic ore deposits in Hwanggangri region. Journal of the Geological Society of Korea, 17, 201-222 (in Korean with English abstract).
  28. Park, K.-H and Lee, T.-H., 2014, Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance. Journal of the Petrological Society of Korea, 23, 279-292 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2014.23.3.279
  29. Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  30. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, 1-18.
  31. Shin, I.-H., Park, Y.-S., Park, C.-Y., Jeong, Y.-J., Izumi, S., 1998. Petrochemistry and Sr, Nd isotopic composition of Boeun Granite, Korea. Journal of Korean Earth Science Society 19, 632-640 (in Korean with English abstract).
  32. So, C. S., Rye, D. M. and Shelton, K. L., 1983, Carbon, hydrogen, oxygen, and sulfur isotope and fluid inclusion study of the Weolag Tungsten-Molybdenum Deposit, Republic of Korea: fluid histories of metamorphic and ore-forming events. Economic Geology, 78, 1551-1573. https://doi.org/10.2113/gsecongeo.78.8.1551
  33. So, C. S. and Yun, S. T., 1992, Geochemistry and genesis of hydrothermal Au-Ag-Pb-Zn deposits in the Hwanggangri Mineralized District, Republic of Korea. Economic Geology, 87, 2056-2081. https://doi.org/10.2113/gsecongeo.87.8.2056
  34. So, C. S. and Yun, S. T., 1994, Origin and evolution of W-Mo producing fluids in a granitic hydrothermal system: geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri District, Republic of Korea. Economic Geology, 89, 246-267. https://doi.org/10.2113/gsecongeo.89.2.246
  35. Taylor, S. R. and McLennen, S. M., 1985, The continental crust : Its composition and evolution. Blackwell. Oxford, 312 pp.
  36. Wang, T., Zheng, Y., Li, T. and Gao, Y., 2004, Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Science, 23, 715-729. https://doi.org/10.1016/S1367-9120(03)00133-0
  37. Whalen, J. B., Currie, K. L. and Chappell, B. W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution of Mineralogy and Petrology, 95, 407-419. https://doi.org/10.1007/BF00402202
  38. Wilson, M., 1989, Igneous Petrogenesis - A Global Tectonic Approach. Chapman and Hall, London. 466 pp.
  39. Won, J. K. and Lee, H. Y., 1967, Geological Survey of Korea, Explanatory text of the geological map of Danyang Sheet (1: 50,000).
  40. Yi, K., Lee, S., Kwon, S. and Cheong, C.-S., 2014, Polyphase tectono-magmatic episodes as revealed by SHRIMP U-Pb geochronology and microanalysis of zircon and titanite from the central Okcheon belt, Korea, Journal of Asian Earth Sciences, 95, 243-253. https://doi.org/10.1016/j.jseaes.2014.04.021