DOI QR코드

DOI QR Code

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline

고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로

  • Received : 2019.03.08
  • Accepted : 2019.03.11
  • Published : 2019.06.30

Abstract

In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

본 연구에서는 유기성폐자원의 바이오가스 생산 및 이용을 최적화를 위해 현장시설의 정밀모니터링과 시설별 에너지수지를 분석하고, 현장문제 해결방안에 대해서 조사하여 전처리시설 및 발전기 등의 설계 및 운전 가이드라인을 제시하였다. 고품질화 정제설비 운영에 잦은 고장 및 효율 저하를 해결하기 위해서는 가스전처리가 필요하며, 탈황, 제습, 탈실록산, 분진 처리, 휘발성유기화합물 등의 처리공정이 있다. 이 공정들은 고품질화 공정에서도 제거되는 물질들이기에 가스 전처리에서는 정량적 가이드라인은 제시하지 않고, 정성적 가이드라인으로 처리공간에 운영하도록 제시하였다. 특히, 분진, 실록산 및 휘발성유기화합물 등은 가스 전처리에서 제거되지 않으면 고품질화 공정의 잦은 고장의 주원인이된다. 바이오가스 고품질화 공정에 대한 설계 운전 가이드라인은 전체 가스 발생량의 90 % 이상 이용, 2계열화, 여유율 10 % 이상 감안 등이 있으며, 품질기준[메탄함량(프로판 포함) 95 % 이상]을 제시함. 또한 균등한 바이오가스 유입을 위해 가스균등조 설치, 보조연료 균등투입 제어를 위한 열량자동조절장치 설치, 가스압축과정에서 다량 발생하는 수분 제거를 위한 고품질화 후단의 제습장치 설치, 겨울철 설비의 결빙 및 효율 저하 방지를 위한 보온설비 설치, 특히 멤브레인 설비는 실내 설치 등을 제시하였다.

Keywords

Table 15. Desulfurization Pre-treatment System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0001.png 이미지

Table 16. Dehumidification Pre-treatment System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0002.png 이미지

Table 17. Dust Pre-treatment System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0003.png 이미지

Table 18. Disiloxane Pre-treatment System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0004.png 이미지

Table 19. Volatile Organic Compounds(VOCs) Treatment System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0005.png 이미지

Table 20. Biogas Holder Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0006.png 이미지

Table 21. Planning and Operational Considerations on All Kinds of Biogas Use

DOGSBE_2019_v27n2_67_t0007.png 이미지

Table 22. Generation System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0008.png 이미지

Table 23. Boiler(Furnace) System Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0009.png 이미지

Table 24. Flare Stack Planning and Operational Considerations

DOGSBE_2019_v27n2_67_t0010.png 이미지

Table 25. Planning and Operational Considerations of Upgrading Process

DOGSBE_2019_v27n2_67_t0011.png 이미지

References

  1. National Biogas Strategy(Energigas Sverige), National Biogas Strategy 2.0. (2018).
  2. EBA, European biomethane map infrastructure for biomethane production 2018. (2018).
  3. Ministry of Environment, 2016 The status of waste generation and treatment in Korea. (2018).
  4. Ministry of Environment, Official testing method on wastes, Korea. (2017).
  5. Ministry of Environment, Official testing method on water, Korea. (2015).
  6. American Public Health Association, American Water Works Association, Water Environment Federation (USA), Standard methods for the examination of water and wastewater. (1998).
  7. G. Tchobanoglous, H. Theisen, S. Vigil, Integrated solid waste management, McGraw-Hill. (1993).
  8. S.K. Khanal, Anaerobic biotechnology for bioenergy production principles and applications, Wiley-Blackwell. (2008).
  9. Korea Gas Safety Corporation, Research on the establishment plan of proper quality standard of alternative natural gas for the generation of electricity, Korea. (2010).
  10. Y. Hong-Wei, D.E. Brune, Anaerobic co-digestion of algal sludge and waste paper to produce methane, Journal of Bioresource Technology. (2007).
  11. Y. Chen, J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Journal of Bioresource Technology. (2008).
  12. National Institute of Environmental Research, Translation of guidelines for biogas production and use in Germany, Korea. (2014).
  13. Muyzer, G The ecology and biotechnology of sulphate-reducing bacteria. (2008).
  14. Shuangya Chen, Xiuzhu Dong, Proteiniphilum acetatigenes gen. nov., sp. nov., from UASB reactor treating brewery wastewater, International Journal of Systematic and Evolutionary Microbiology. (2005).
  15. Imachi, Pelotomaculum thermopropionicum gen. nov., sp. nov., anaerobic, thermophilic, syntrophic propionate-oxdizing bacteriun, international Journal of Systematic and Evolutionary Microbiology. (2002).