DOI QR코드

DOI QR Code

Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process

액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성

  • Seo, Deok-Ho (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Hyang-Yeon (EV Components & Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 서덕호 (충남대학교 에너지과학기술대학원) ;
  • 김향연 (한국생산기술연구원 EV부품소재그룹) ;
  • 김성수 (충남대학교 에너지과학기술대학원)
  • Received : 2019.04.05
  • Accepted : 2019.04.18
  • Published : 2019.07.01

Abstract

This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

Keywords

JJJRCC_2019_v32n4_341_f0001.png 이미지

Fig. 1. Rapidly solidification process.

JJJRCC_2019_v32n4_341_f0002.png 이미지

Fig. 2. (a) XRD pattern and (b) TEM image of Si50Al30Fe20 amorphous alloy.

JJJRCC_2019_v32n4_341_f0003.png 이미지

Fig. 4. XRD patterns of Si50Al30Fe20 alloys in pristine state and further annealed 673 K, 773 K, 873 K, and 973 K, respectively.

JJJRCC_2019_v32n4_341_f0004.png 이미지

Fig. 5. TEM and SAED patterns of Si50Al30Fe20 alloys at (a) pristine state and further annealed at (b) 873 K, and (c) 973 K, respectively.

JJJRCC_2019_v32n4_341_f0005.png 이미지

Fig. 6. TEM micrographs of Si50Al30Fe20 alloys and EDS-mapping of Si, Al and Fe elements in (a) pristine state and further annealed (b) 873 K, and (c) 973 K, respectively.

JJJRCC_2019_v32n4_341_f0006.png 이미지

Fig. 8. Corresponding dQ/dV plots of Si50Al30Fe20 alloys in (a) pristine state, and further annealed at (b) 673 K, (c) 773 K, (d) 873 K, and (e) 973 K, respectively.

JJJRCC_2019_v32n4_341_f0007.png 이미지

Fig. 3. DSC plot of Si50Al30Fe20 alloy (dashed line indicates annealing temperature used in this study).

JJJRCC_2019_v32n4_341_f0008.png 이미지

Fig. 7. (a) Initial charge-discharge curves and (b) charge-discharge curves on 2nd cycle of Si50Al30Fe20 alloys in pristine, annealed at 673 K, 773 K, 873 K, and 973 K.

JJJRCC_2019_v32n4_341_f0009.png 이미지

Fig. 9. (a) Cycle performance and (b) capacity retention of Si50Al30Fe20 alloys in pristine annealed at 673 K, 773 K, 873 K, and 973 K states.

References

  1. R. A. Huggins, J. Power Sources, 81, 13 (1999). [DOI: https://doi.org/10.1016/S0378-7753(99)00124-X]
  2. M. Winter and J. O. Besenhard, Electrochim. Acta, 45, 31 (1999). [DOI: https://doi.org/10.1016/S0013-4686(99)00191-7]
  3. J. M. Tarascon and M. Aramand, Nature, 414, 359 (2001). [DOI: https://doi.org/10.1038/35104644]
  4. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy Environ. Sci., 2, 638 (2009). [DOI: https://doi.org/10.1039/B904116H]
  5. M. N. Obrovac, L. Christensen, D. B. Le, and J. R. Dahn, J. Electrochem. Soc., 154, A849 (2007). [DOI: https://doi.org/10.1149/1.2752985]
  6. J. R. Szczech and S. Jin, Energy Environ. Sci., 4, 56 (2011). [DOI: https://doi.org/10.1039/C0EE00281J]
  7. J. O. Besenhard, Y. Yang, and M. Winter, J. Power Sources, 68, 87 (1997). [DOI: https://doi.org/10.1016/S0378-7753(96)02547-5]
  8. X. W. Zhang, P. K. Patil, C. Wang, A. J. Appleby, F. E. Little, and D. L. Cocke, J. Power Sources, 125, 206 (2004). [DOI: https://doi.org/10.1016/j.jpowsour.2003.07.019]
  9. C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol., 3, 31 (2008). [DOI: https://doi.org/10.1038/nnano.2007.411]
  10. Z. Du, S. N. Ellis, R. A. Dunlap, and M. N. Obrovac, J. Electrochem. Soc., 163, A13 (2016). [DOI: https://doi.org/10.1149/2.0011602jes]
  11. S. B. Son, S. C. Kim, C. S. Kang, T. A. Yersak, Y. C. Kim, C. G. Lee, S. H. Moon, J. S. Cho, J. T. Moon, K. H. Oh, and S. H. Lee, Adv. Eng. Mater., 2, 1226 (2012). [DOI:https://doi.org/10.1002/aenm.201200180]
  12. A. Inoue, Acta Mater., 48, 279 (2000). [DOI: https://doi.org/10.1016/S1359-6454(99)00300-6]
  13. D. V. Louzguine and A. Inoue, Mater. Trans., JIM, 38, 1095 (1997). [DOI: https://doi.org/10.2320/matertrans1989.38.1095]
  14. A. Netz, R. A. Huggins, and W. Weppner, J. Power Sources, 119, 95 (2003). [DOI: https://doi.org/10.1016/S0378-7753(03)00132-0]
  15. N. Umirov, D. H. Seo, K. N. Jung, H. Y. Kim, and S. S. Kim, J. Electrochem. Sci. Technol., 10, 82 (2019). [DOI:https://doi.org/10.5229/JECST.2019.10.1.82]
  16. J. S. Kim, N. Umirov, H. Y. Kim, and S. S. Kim, J. Electrochem. Sci. Technol., 9, 51 (2018). [DOI: https://doi.org/10.5229/JECST.2018.9.1.51]
  17. N. Umirov, D. H. Seo, T. Kim, H. Y. Kim, and S. S. Kim, J. Ind. Eng. Chem., 71, 351 (2018). [DOI: https://doi.org/10.1016/j.jiec.2018.11.046]
  18. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano, 6, 1522 (2012). [DOI: https://doi.org/10.1021/nn204476h]
  19. G. E. Dieter, Mechanical Metallurgy, 2nd ed. (McGraw-Hill, New York, 1976) p.77.
  20. J. Wolfenstine, J. Power Sources, 79, 111 (1999). [DOI:https://doi.org/10.1016/S0378-7753(99)00052-X]
  21. S. H. Lee, J. Sung, and S. S. Kim, J. Kor. Electrochem. Soc., 18, 68 (2015). [DOI: https://doi.org/10.5229/JKES.2015.18.2.68]
  22. S. Chang, J. Moon, and M. Cho, J. Mech. Sci. Technol., 29, 4807 (2015). [DOI: https://doi.org/10.1007/s12206-015-1055-4]