DOI QR코드

DOI QR Code

그린 공급망 네트워크 모델: 유전알고리즘 접근법

Green Supply Chain Network Model: Genetic Algorithm Approach

  • 투고 : 2019.06.03
  • 심사 : 2019.06.08
  • 발행 : 2019.06.30

초록

본 연구에서는 그린공급망(green supply chain: gSC) 네트워크 모델이 제안된다. 제안된 gSC 네트워크 모델은 환경적 요인 및 경제적 요인을 고려한다. 환경적 요인으로는 부품 및 제품 수송 과정에서 발생하는 CO2 발생량의 총비용 최소화를 고려하며, 경제적 요인으로는 부품 및 제품 생산처리에 필요한 처리비용, 수송과정에서 발생하는 수송비용, 각 단계에서 고려되는 설비들의 개설을 위한 개설비용의 최소화를 고려한다. 수리모형에서는 환경적 요인 및 경제적 요인을 위해 고려되는 다양한 비용들의 총합의 최소화를 목적함수로 사용하며, 각 단계 간 수송량의 제약 등 다양한 제약조건을 함께 고려한다. 제안된 수리모형의 이행을 위해 유전알고리즘(Genetic algorithm: GA) 접근법을 사용한다. 수치실험에서는 네 가지 규모의 gSC 네트워크 모델을 제시하고, 이를 다양한 수행도 척도들을 사용하여 GA 접근법을 통해 해결하였다. 실험결과는 제안된 gSC 네트워크 모델과 GA 접근법의 우수성을 입증하였다.

In this paper, we design a green supply chain (gSC) network model. For constructing the gSC network model, environmental and economic factors are taken into consideration in it. Environmental factor is to minimize the $CO_2$ emission amount emitted when transporting products or materials between each stage. For economic factor, the total cost which is composed of total transportation cost, total handling cost and total fixed cost is minimized. To minimize the environmental and economic factors simultaneously, a mathematical formulation is proposed and it is implemented in a genetic algorithm (GA) approach. In numerical experiment, some scales of the gSC network model is presented and its performance is analyzed using the GA approach. Finally, the efficiencies of the gSC network model and the GA approach are proved.

키워드

SOJBB3_2019_v24n3_31_f0001.png 이미지

Fig. 1 Conceptual material flow structure for the gSC network model

SOJBB3_2019_v24n3_31_f0002.png 이미지

Fig. 2 Flow of transportation amount in the gSC_1

SOJBB3_2019_v24n3_31_f0003.png 이미지

Fig. 3 Flow of transportation amount in the gSC_2

Table 1 Four scales for the gSC network model implementationScale Supplier Manufacturer DC Retailer Customer

SOJBB3_2019_v24n3_31_t0001.png 이미지

Table 3 Computation results using the proposed GA approach

SOJBB3_2019_v24n3_31_t0002.png 이미지

Table 2 Measure of performance

SOJBB3_2019_v24n3_31_t0003.png 이미지

참고문헌

  1. Chen, Y. T., Chan, F. T. S. and Chung, S. H., "An integrated closed-loop supply chain model with location and allocation problem and product recycling decisions," International Journal of Production Research, Vol. 53, pp. 3120-3140, 2015. https://doi.org/10.1080/00207543.2014.975849
  2. Gen, M. and Cheng, R., "Genetic algorithms and engineering optimization," John-Wiley & Sons, New York, 2000.
  3. Min, H., Ko, C. S. and Ko, H. J., "The spatial and temporal consolidation of returned products in a closed-loop supply chain network," Computers and Industrial Engineering, Vol. 51 pp. 309-320. 2006a. https://doi.org/10.1016/j.cie.2006.02.010
  4. Min, H., Ko, H. J. and Ko, C. S., "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Vol. 34, pp. 56-69, 2006b. https://doi.org/10.1016/j.omega.2004.07.025
  5. Ozceylan, E., Demirel, N., Cetinkaya, C. Demirel, E., "A closed-loop supply chain network design for automotive industry in Turkey," Computers and Industrial Engineering, Vol. 113, pp. 727-745, 2017. https://doi.org/10.1016/j.cie.2016.12.022
  6. Paksoy T., “Optimizing a supply chain network with emission trading factor,” Scientific Research and Essays, Vol. 5, No. 17, pp. 2535-2546, 2010.
  7. Savaskan, R. C., Bhattacharya, S. and Van Wassenhove, L. V., “Closed-loop supply chain models with product remanufacturing,” Management Science, Vol. 50, No. 2, pp. 239-252, 2004. https://doi.org/10.1287/mnsc.1030.0186
  8. Son, D., Kim, S., Park, H. and Jeong, B., "Closed-loop supply chain planning model of rare metals," Sustainability, Vol. 10, No. 4, pp. 1061, https://doi.org/10.3390/su10041061, 2018.
  9. Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A. and Gholamnejad, S. A., "A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry," Journal of Cleaner Production, Vol. 113, pp. 662-673, 2016. https://doi.org/10.1016/j.jclepro.2015.10.074
  10. Versei M, Polyakovskiy S., "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Vol. 66, pp. 236-247, 2017. https://doi.org/10.1016/j.omega.2015.11.009
  11. Wang, H. F. and Hsu, H. W., "A closed-loop logistic model with a spanning tree based genetic algorithm," Computers and Operations Research, Vol. 37, pp. 376-389, 2010. https://doi.org/10.1016/j.cor.2009.06.001
  12. Yun, Y. S., Chuluunsukh, A. and Chen X., “Hybrid genetic algorithm for optimizing closed-loop supply chain model with direct shipment and delivery,” New Physics: Sae Mulli, Vol. 68, No. 6, pp. 683-692, 2018. https://doi.org/10.3938/NPSM.68.683
  13. Yun, Y. S. and Chuluunsukh, A., "Environmentally-friendly supply chain network with various transportation types," Journal of Global Tourism Research, Vol. 3, No.1 pp. 17-24, 2018. https://doi.org/10.37020/jgtr.3.1_17

피인용 문헌

  1. A Study of Cold Chain Logistics in China: Hybrid Genetic Algorithm Approach vol.25, pp.6, 2020, https://doi.org/10.9723/jksiis.2020.25.6.159