DOI QR코드

DOI QR Code

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type

기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석

  • Son, Il-Min (Department of Civil and Environmental Engineering, Graduate School, Chonnam Univ.) ;
  • Kim, Jae-Min (Department of Civil Engineering, Chonnam Univ.) ;
  • Lee, Changho (Department of Marine and Civil Engineering, Chonnam Univ.)
  • 손일민 (전남대학교 대학원 건설.환경공학과) ;
  • 김재민 (전남대학교 토목공학과) ;
  • 이창호 (전남대학교 해양토목공학과)
  • Received : 2019.02.22
  • Accepted : 2019.04.30
  • Published : 2019.06.30

Abstract

In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.

이 연구에서는 기초의 종류에 따라 지반-구조물 상호작용(SSI) 효과가 LNG 저장탱크의 지진응답해석에 미치는 효과를 분석하였다. 이를 위하여 직경 71m인 LNG 탱크와 기반암 위 점토지반의 깊이가 30m인 지반조건을 고려하였다. 그리고 기초형식으로 네 가지(얕은 기초, 말뚝지지 전면기초, 말뚝기초(지표면 접촉식, 부유식)를 고려하였다. 지반의 비선형성은 자유장 지반에 대하여 등가선형화기법으로 고려되었다. 또한, 말뚝기초의 시공과정에서 발생하는 동다짐 효과에 대해서도 분석하였다. SSI 해석을 위하여 진동수영역 해석프로그램인 KIESSI-3D를 이용하였다. 지반-구조물 상호작용 해석을 통해 LNG 저장탱크의 외조 벽체 쉘의 응력과 내조탱크의 밑면전단력 및 전도모멘트를 구하였다. 해석결과로부터 다음과 같은 결론을 얻을 수 있었다: (1) 고정 기초해석에 의한 외조와 내조탱크의 지진응답이 SSI 효과로 인한 지진응답보다 매우 컸다. (2) SSI의 효과가 내조탱크와 외조탱크의 동적응답에 미치는 영향은 기초의 형식에 따라 다르게 나타난다. (3) 말뚝지지 전면기초에서 동다짐 효과에 의한 구조물 응답의 변화는 약 10%로서 무시할 수 없을 정도로 큰 것으로 나타났다.

Keywords

References

  1. ANSYS Inc. (2017) ANSYS 17, User's Reference Manual.
  2. API 650 (2013) Welded Tanks for Oil Storage, American Petroleum Institute.
  3. ASCE 4-16 (2017) Seismic Analysis of Safety- Related Nuclear Structures and Commentary, ASCE.
  4. ASCE/SEI 7-10 (2010) Minimum Design Loads for Buildings and Other Structures, ASCE.
  5. Cho, K.H., Kim, M.K., Lim, Y.M., Cho, S.Y. (2004) Seismic Response of Base-Isolated Liquid Storage Tanks Considering Fluid-Structure-Soil Interaction in Time Domain, Soil Dyna. & Earthq. Eng., 24(11), pp.839-852. https://doi.org/10.1016/j.soildyn.2004.05.003
  6. Choi, K.J., Park, D.G., Lee, J.H. (2012) Load Sharing Analysis of Pied Rafts Based on Non-linear Load Settlement Characteristics, J. Korean Geotech. Soc., 28(11), pp.33-40. https://doi.org/10.7843/kgs.2012.28.11.33
  7. Eurocode 8 (2006) Design of Structures for Earthquake Resistance, Part 4: Silos, Tanks and Pipelines, European Committee for Standardization, Brussels.
  8. Ha, J.G., Park, H.J., Lee, M.K., Lee, H.R., Kim, D.S., Kwon, S.Y., Kim, H.U. (2017) Seismic Behavior of LNG Storage Tank Considering Soil Foundation Structure Interaction with Different Foundation Types, 19th Int. Conf. Soil Mech. & Geotech. Eng..
  9. Haroun, M.A. (1980) Dynamic Analysis of Liquid Storage Tanks, California Institute of Technology, Report No. EERL 80-04.
  10. Hokmabadi A.S., Fatahi, B. (2016) Influence of Foundation Type on Seismic Performance of Buildings Considering Soil-Structure Interaction, Int. J. Struct. Stab. & Dyna., 16(8), 1550043. https://doi.org/10.1142/S0219455415500431
  11. Jin, B.M., Jeon, S.J., Kim, S.W., Kim, Y.J., Chung, C.H. (2004) Earthquake Response Analysis of LNG Storage Tank by Axisymmetric Finite Element Model and Comparison to the Results of the Simple Model, 13th World Conf. Earthq. Eng.. Paper. No.394.
  12. Kappos, A.J., Sextos, A.G. (2001) Effect of Foundation Type and Compliance on Seismic Response of RC Bridges, J. Bridge Eng., 6(2), 20245.
  13. Kim, M.K., Rhee, J.W., Lee, P.K., Kim, M.K. (2004) A Study of Characteristics of Soil-Pile-Structure Interaction Behavior on the Frequency Contents of the Seismic Waves, Comput. Struct. Eng., 17(3), pp.295-308.
  14. Kim, J.M., Chang, S.H., Yun, C.B. (2002) Fluid-Structure-Soil Interaction Analysis of Cylindrical Liquid Storage Tanks Subjected to Horizontal Earthquake Loading, Struct. Eng. & Mech., 13(6) pp.615-638. https://doi.org/10.12989/sem.2002.13.6.615
  15. Kim, J.H., Kim, S.K., Chun, B.S. (2013) A Study on Piled Raft Constructed on Soft Ground through Numerical Analysis, J. Korean Geo Environ. Soc., 14(3), pp.29-34.
  16. Kim, J.M., Son, I.M., Kang, B.R., Yun, C.B., Chung, M.J. (2015) A Simplified Analysis Model for Seismic Analysis of Pile-Supported Cylindrical Liquid Storage Tank Considering Fluid Structure Soil Interaction, J. Korean Soc. Hazard Mitig., 15(4), pp.203-214. https://doi.org/10.9798/KOSHAM.2015.15.4.203
  17. Kim, J.M. et al. (2016) Development of World-Best Fundamental Technologies for Nonlinear Fluid Structure Soil Interaction Analysis by Developing p-version Dynamic Infinite Elements and Performing Sloshing Shaking Table Tests, Report No.14CTAP-C077514-01, Chonnam National University.
  18. Kramer, S.L. (1996) Geotechnical Earthquake Engineering, Prentice-Hall, Englewood Cliffs.
  19. Mlahotra, P.K. (1997) New Method for Seismic Isolation of Liquid Storage Tanks, Earthq. Eng. & Struct. Dyn., 26(8), pp.839-847. https://doi.org/10.1002/(SICI)1096-9845(199708)26:8<839::AID-EQE679>3.0.CO;2-Y
  20. Park, H.J., Ha, J.G., Kwon, S.Y., Lee, M.G., Kim, D.S. (2017) Investigation of the Dynamic Behaviour of a Storage Tank with Different Foundation Types Focusing on the Soil Foundation Structure Interactions using Centrifuge Model Tests, Earthq. Eng. & Struct. Dyn., 46(14), pp.2301-2316. https://doi.org/10.1002/eqe.2905
  21. Schnabel, P.B., Lysmer, J., Seed H.B. (1991) SHAKE91, A Computer Program for Earthquake Response Analysis of Horizontal Layered Sites, EERC(Earthquake Engineering Research Center), College of Engineering, University of California Berkeley, California.
  22. Seo, C.G., Kim, J.M. (2012) KIESSI Program for 3-D Soil-Structure Interaction Analysis, Comput. Struct. Eng., 25(3), pp.77-83.
  23. Seo, K.Y., Park, H.J., Kim, N.S., Kim, J.M., Yang, S.Y. (2014) Seismic Design for Application of LNG Storage Tank Isolation System, KSNVE, 24(3), pp.227-235. https://doi.org/10.5050/KSNVE.2013.24.3.227
  24. Sun, J., Cui, L. (2015) Seismic Response for Base Isolation of Storage Tanks with Soil-Structure Interaction, Phys. & Numer. Simul. Geotech. Eng., pp.64-68.
  25. Veletsos, A.S., Tang, Y. (1990) Soil-Structure Interaction Effects for Laterally Excited Liquid Storage Tanks, Earthq. Eng. & Struct. Dyn., 19(4), pp.473-496. https://doi.org/10.1002/eqe.4290190402
  26. Yoo, M.T., Ha, J.G., Jo, S.B., Kim, D.S. (2014) Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-Foundation-Structure Interaction, J. Earthq. Eng. Soc. Korea, 18(3), pp.125-132. https://doi.org/10.5000/EESK.2014.18.3.125
  27. Zhang, R., Weng, D., Ren, X. (2011) Seismic Analysis of a LNG Storage Tank Isolated by a Multiple Friction Pendulum System, Earthq. Eng. & Eng. Vib., 10(2), pp.253-262. https://doi.org/10.1007/s11803-011-0063-3