DOI QR코드

DOI QR Code

Patient-specific pluripotent stem cell-based Parkinson's disease models showing endogenous alpha-synuclein aggregation

  • Oh, Yohan (Department of Medicine, College of Medicine, Hanyang University)
  • Received : 2019.04.17
  • Published : 2019.06.30

Abstract

After the first research declaring the generation of human induced pluripotent stem cells (hiPSCs) in 2007, several attempts have been made to model neurodegenerative disease in vitro during the past decade. Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is mainly characterized by motor dysfunction. The formation of unique and filamentous inclusion bodies called Lewy bodies (LBs) is the hallmark of both PD and dementia with LBs. The key pathology in PD is generally considered to be the alpha-synuclein (${\alpha}$-syn) accumulation, although it is still controversial whether this protein aggregation is a cause or consequence of neurodegeneration. In the present work, the recently published researches which recapitulated the ${\alpha}$-syn aggregation phenomena in sporadic and familial PD hiPSC models were reviewed. Furthermore, the advantages and potentials of using patient-derived PD hiPSC with focus on ${\alpha}$-syn aggregation have been discussed.

Keywords

References

  1. Olanow CW and Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22, 123-144 https://doi.org/10.1146/annurev.neuro.22.1.123
  2. Dauer W and Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909 https://doi.org/10.1016/S0896-6273(03)00568-3
  3. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045
  4. Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 https://doi.org/10.1126/science.1090278
  5. Chartier-Harlin MC, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167-1169 https://doi.org/10.1016/S0140-6736(04)17103-1
  6. Lee VM and Trojanowski JQ (2006) Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52, 33-38 https://doi.org/10.1016/j.neuron.2006.09.026
  7. Fujiwara H, Hasegawa M, Dohmae N et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4, 160-164 https://doi.org/10.1038/ncb748
  8. Jackson-Lewis V, Blesa J and Przedborski S (2012) Animal models of Parkinson's disease. Parkinsonism Relat Disord 18 Suppl 1, S183-185 https://doi.org/10.1016/S1353-8020(11)70057-8
  9. Koprich JB, Kalia LV and Brotchie JM (2017) Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18, 515-529 https://doi.org/10.1038/nrn.2017.75
  10. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225 https://doi.org/10.1038/nature09915
  11. Dimos JT, Rodolfa KT, Niakan KK et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221 https://doi.org/10.1126/science.1158799
  12. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25, 1015-1024 https://doi.org/10.1038/nbt1327
  13. Li XJ, Du ZW, Zarnowska ED et al (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23, 215-221 https://doi.org/10.1038/nbt1063
  14. Maroof AM, Brown K, Shi SH, Studer L and Anderson SA (2010) Prospective isolation of cortical interneuron precursors from mouse embryonic stem cells. J Neurosci 30, 4667-4675 https://doi.org/10.1523/JNEUROSCI.4255-09.2010
  15. Cunningham M, Cho JH, Leung A et al (2014) hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell 15, 559-573 https://doi.org/10.1016/j.stem.2014.10.006
  16. Joseph NM and Morrison SJ (2005) Toward an understanding of the physiological function of Mammalian stem cells. Dev Cell 9, 173-183 https://doi.org/10.1016/j.devcel.2005.07.001
  17. Saha K and Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584-595 https://doi.org/10.1016/j.stem.2009.11.009
  18. Li H, Jiang H, Zhang B and Feng J (2018) Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. J Parkinsons Dis 8, 479-493 https://doi.org/10.3233/JPD-181353
  19. Sison SL, Vermilyea SC, Emborg ME and Ebert AD (2018) Using Patient-Derived Induced Pluripotent Stem Cells to Identify Parkinson's Disease-Relevant Phenotypes. Curr Neurol Neurosci Rep 18, 84 https://doi.org/10.1007/s11910-018-0893-8
  20. Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90, 11282-11286 https://doi.org/10.1073/pnas.90.23.11282
  21. Weinreb PH, Zhen W, Poon AW, Conway KA and Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709-13715 https://doi.org/10.1021/bi961799n
  22. Davidson WS, Jonas A, Clayton DF and George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273, 9443-9449 https://doi.org/10.1074/jbc.273.16.9443
  23. Bartels T, Choi JG and Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107-110 https://doi.org/10.1038/nature10324
  24. Wang W, Perovic I, Chittuluru J et al (2011) A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 108, 17797-17802 https://doi.org/10.1073/pnas.1113260108
  25. Dettmer U, Newman AJ, Soldner F et al (2015) Parkinsoncausing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 6, 7314 https://doi.org/10.1038/ncomms8314
  26. Tong J, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: a comparative investigation. Brain 133, 172-188 https://doi.org/10.1093/brain/awp282
  27. Winklhofer KF, Tatzelt J and Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27, 336-349 https://doi.org/10.1038/sj.emboj.7601930
  28. McCann H, Stevens CH, Cartwright H and Halliday GM (2014) alpha-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20 Suppl 1, S62-67 https://doi.org/10.1016/S1353-8020(13)70017-8
  29. Savica R, Grossardt BR, Bower JH, Ahlskog JE and Rocca WA (2013) Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol 70, 859-866 https://doi.org/10.1001/jamaneurol.2013.114
  30. Oueslati A, Fournier M and Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog Brain Res 183, 115-145 https://doi.org/10.1016/S0079-6123(10)83007-9
  31. Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281, 29739-29752 https://doi.org/10.1074/jbc.M600933200
  32. Chen L and Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8, 657-663 https://doi.org/10.1038/nn1443
  33. Yamada M, Iwatsubo T, Mizuno Y and Mochizuki H (2004) Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J Neurochem 91, 451-461 https://doi.org/10.1111/j.1471-4159.2004.02728.x
  34. Takahashi M, Kanuka H, Fujiwara H et al (2003) Phosphorylation of alpha-synuclein characteristic of synucleinopathy lesions is recapitulated in alpha-synuclein transgenic Drosophila. Neurosci Lett 336, 155-158 https://doi.org/10.1016/S0304-3940(02)01258-2
  35. Oueslati A (2016) Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? J Parkinsons Dis 6, 39-51 https://doi.org/10.3233/JPD-160779
  36. Tenreiro S, Eckermann K and Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 7, 42 https://doi.org/10.3389/fnmol.2014.00042
  37. Arenas E, Denham M and Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142, 1918-1936 https://doi.org/10.1242/dev.097394
  38. Park CH, Minn YK, Lee JY et al (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92, 1265-1276 https://doi.org/10.1111/j.1471-4159.2004.03006.x
  39. Zeng X, Cai J, Chen J et al (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925-940 https://doi.org/10.1634/stemcells.22-6-925
  40. Perrier AL, Tabar V, Barberi T et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101, 12543-12548 https://doi.org/10.1073/pnas.0404700101
  41. Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R and Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25, 411-418 https://doi.org/10.1634/stemcells.2006-0380
  42. Roy NS, Cleren C, Singh SK, Yang L, Beal MF and Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12, 1259-1268 https://doi.org/10.1038/nm1495
  43. Kim BK, Kim SE, Shim JH et al (2006) Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Lett 580, 5869-5874 https://doi.org/10.1016/j.febslet.2006.09.053
  44. Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS and Zeng X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 4, e6233 https://doi.org/10.1371/journal.pone.0006233
  45. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M and Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275-280 https://doi.org/10.1038/nbt.1529
  46. Fasano CA, Chambers SM, Lee G, Tomishima MJ and Studer L (2010) Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6, 336-347 https://doi.org/10.1016/j.stem.2010.03.001
  47. Kriks S, Shim JW, Piao J et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547-551 https://doi.org/10.1038/nature10648
  48. Chambers SM, Qi Y, Mica Y et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30, 715-720 https://doi.org/10.1038/nbt.2249
  49. Soldner F, Hockemeyer D, Beard C et al (2009) Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964-977 https://doi.org/10.1016/j.cell.2009.02.013
  50. Baba M, Nakajo S, Tu PH et al (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152, 879-884
  51. Mazzulli JR, Zunke F, Isacson O, Studer L and Krainc D (2016) alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113, 1931-1936 https://doi.org/10.1073/pnas.1520335113
  52. Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985-989 https://doi.org/10.1126/science.290.5493.985
  53. Lin L, Goke J, Cukuroglu E, Dranias MR, VanDongen AM and Stanton LW (2016) Molecular Features Underlying Neurodegeneration Identified through In Vitro Modeling of Genetically Diverse Parkinson's Disease Patients. Cell Rep 15, 2411-2426 https://doi.org/10.1016/j.celrep.2016.05.022
  54. Kouroupi G, Taoufik E, Vlachos IS et al (2017) Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease. Proc Natl Acad Sci U S A 114, E3679-E3688 https://doi.org/10.1073/pnas.1617259114
  55. Ryan SD, Dolatabadi N, Chan SF et al (2013) Isogenic human iPSC Parkinson's model shows nitrosative stressinduced dysfunction in MEF2-PGC1alpha transcription. Cell 155, 1351-1364 https://doi.org/10.1016/j.cell.2013.11.009
  56. Mazzulli JR, Zunke F, Tsunemi T et al (2016) Activation of beta-Glucocerebrosidase Reduces Pathological alpha-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 36, 7693-7706 https://doi.org/10.1523/JNEUROSCI.0628-16.2016
  57. Prots I, Grosch J, Brazdis RM et al (2018) alpha-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci U S A 115, 7813-7818 https://doi.org/10.1073/pnas.1713129115
  58. Ludtmann MHR, Angelova PR, Horrocks MH et al (2018) alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 9, 2293 https://doi.org/10.1038/s41467-018-04422-2
  59. Tagliafierro L, Zamora ME and Chiba-Falek O (2019) Multiplication of the SNCA locus exacerbates neuronal nuclear aging. Hum Mol Genet 28, 407-421 https://doi.org/10.1093/hmg/ddy355
  60. Klein C and Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2, a008888 https://doi.org/10.1101/cshperspect.a008888
  61. di Domenico A, Carola G, Calatayud C et al (2019) Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease. Stem Cell Reports 12, 213-229 https://doi.org/10.1016/j.stemcr.2018.12.011
  62. Shaltouki A, Sivapatham R, Pei Y et al (2015) Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Reports 4, 847-859 https://doi.org/10.1016/j.stemcr.2015.02.019
  63. Chung SY, Kishinevsky S, Mazzulli JR et al (2016) Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and alpha- Synuclein Accumulation. Stem Cell Reports 7, 664-677 https://doi.org/10.1016/j.stemcr.2016.08.012
  64. Hruska KS, LaMarca ME, Scott CR and Sidransky E (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29, 567-583 https://doi.org/10.1002/humu.20676
  65. Nalls MA, Duran R, Lopez G et al (2013) A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 70, 727-735 https://doi.org/10.1001/jamaneurol.2013.1925
  66. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 361, 1651-1661 https://doi.org/10.1056/NEJMoa0901281
  67. Eblan MJ, Walker JM and Sidransky E (2005) The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 352, 728-731; author reply 728-731 https://doi.org/10.1056/NEJM200502173520719
  68. Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A and Sidransky E (2004) Parkinsonism among Gaucher disease carriers. J Med Genet 41, 937-940 https://doi.org/10.1136/jmg.2004.024455
  69. Halperin A, Elstein D and Zimran A (2006) Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 36, 426-428 https://doi.org/10.1016/j.bcmd.2006.02.004
  70. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME and Sidransky E (2004) Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 81, 70-73 https://doi.org/10.1016/j.ymgme.2003.11.004
  71. Kim S, Yun SP, Lee S et al (2018) GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115, 798-803 https://doi.org/10.1073/pnas.1700465115
  72. Luk KC, Song C, O'Brien P et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106, 20051-20056 https://doi.org/10.1073/pnas.0908005106
  73. Soria-Valles C and Lopez-Otin C (2016) iPSCs: On the Road to Reprogramming Aging. Trends Mol Med 22, 713-724 https://doi.org/10.1016/j.molmed.2016.05.010
  74. Zeltner N and Studer L (2015) Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 37, 102-110 https://doi.org/10.1016/j.ceb.2015.10.008
  75. Vera E and Studer L (2015) When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development 142, 3085-3089 https://doi.org/10.1242/dev.120667
  76. Studer L, Vera E and Cornacchia D (2015) Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell 16, 591-600 https://doi.org/10.1016/j.stem.2015.05.004
  77. Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691-705 https://doi.org/10.1016/j.stem.2013.11.006
  78. Bolognin S, Fossepre M, Qing X et al (2019) 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Adv Sci (Weinh) 6, 1800927 https://doi.org/10.1002/advs.201800927
  79. Jo J, Xiao Y, Sun AX et al (2016) Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248-257 https://doi.org/10.1016/j.stem.2016.07.005
  80. Monzel AS, Smits LM, Hemmer K et al (2017) Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Reports 8, 1144-1154 https://doi.org/10.1016/j.stemcr.2017.03.010
  81. Peng J, Oo ML and Andersen JK (2010) Synergistic effects of environmental risk factors and gene mutations in Parkinson's disease accelerate age-related neurodegeneration. J Neurochem 115, 1363-1373 https://doi.org/10.1111/j.1471-4159.2010.07036.x
  82. Havlicek S, Kohl Z, Mishra HK et al (2014) Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons. Hum Mol Genet 23, 2527-2541 https://doi.org/10.1093/hmg/ddt644
  83. Tagliafierro L, Glenn OC, Zamora ME et al (2017) Genetic analysis of alpha-synuclein 3' untranslated region and its corresponding microRNAs in relation to Parkinson's disease compared to dementia with Lewy bodies. Alzheimers Dement 13, 1237-1250 https://doi.org/10.1016/j.jalz.2017.03.001
  84. Hu Y, Qu ZY, Cao SY et al (2016) Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. J Neurosci Methods 266, 42-49 https://doi.org/10.1016/j.jneumeth.2016.03.017
  85. Crompton LA, Byrne ML, Taylor H et al (2013) Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling. Stem Cell Res 11, 1206-1221 https://doi.org/10.1016/j.scr.2013.08.002
  86. Serio A, Bilican B, Barmada SJ et al (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A 110, 4697-4702 https://doi.org/10.1073/pnas.1300398110