DOI QR코드

DOI QR Code

Thymol Rich Thymbra capitata Essential Oil Inhibits Quorum Sensing, Virulence and Biofilm Formation of Beta Lactamase Producing Pseudomonas aeruginosa

  • Received : 2018.12.12
  • Accepted : 2019.03.25
  • Published : 2019.06.30

Abstract

Infections with Pseudomonas aeruginosa are difficult to treat not only because it is often associated with multidrug-resistant infections but also it is able to form biofilm. The aim of this study was to evaluate the antibiofilm and anti-Quorum Sensing (QS) activities of Thymbra capitata essential oils (EOs) against Beta Lactamase (BL) producing P. aeruginosa and the reference strain P. aeruginosa 10145. GC/MS analysis showed that thymol (23.25%) is the most dominant compound in T. capitata EOs. The MICs of T. capitata EOs against P. aeruginosa (BL) and P. aeruginosa 10145 were 1.11%. At sub MIC (0.041, 0.014 and 0.0046%), the EOs of T. capitata remarkably inhibited the biofilm formation of both strains tested and complete inhibition of the biofilm formation was reported at 0.041%. The EOs of T. capitata were found to inhibit the swarming motility, aggregation ability and hydrophobic ability of P. aeruginosa (BL) and P. aeruginosa 10145. Interestingly, the EOs of T. capitata reduce the production of three secreted virulence factors that regulated by QS system including pyocyanin, rhamnolipids and LasA protease. The potent antibiofilm and anti-QS activities of T. capitata EOs can propose it as a new antibacterial agent to control pseudomonas infections.

Keywords

References

  1. Driscoll, J. A.; Brody, S. L.; Kollef, M. H. Drugs 2007, 67, 351-368. https://doi.org/10.2165/00003495-200767030-00003
  2. Sader, H. S.; Huband, M. D.; Castanheira, M.; Flamm, R. K. Antimicrob. Agents Chemother. 2017, 61, e02252-16.
  3. Oppenheimer-Shaanan, Y.; Steinberg, N.; Kolodkin-Gal, I. Trends Microbiol. 2013, 21, 594-601. https://doi.org/10.1016/j.tim.2013.08.005
  4. Diggle, S. P.; Matthijs, S.; Wright, V. J.; Fletcher, M. P.; Chhabra, S. R.; Lamont, I. L.; Kong, X.; Hider, R. C.; Cornelis, P.; Camara, M. Chem. Biol. 2007, 14, 87-96. https://doi.org/10.1016/j.chembiol.2006.11.014
  5. Jimenez, P. N.; Koch, G.; Thompson, J. A.; Xavier, K. B.; Cool, R. H.; Quax, W. J. Microbiol. Mol. Biol. Rev. 2012, 76, 46-65. https://doi.org/10.1128/MMBR.05007-11
  6. Vu, B.; Chen, M.; Crawford, R. J.; Ivanova, E. P. Molecules 2009, 14, 2535-2554. https://doi.org/10.3390/molecules14072535
  7. Armentano, I.; Arciola, C. R.; Fortunati, E.; Ferrari, D.; Mattioli, S.; Amoroso, C. F.; Rizzo, J.; Kenny, J. M.; Imbriani, M.; Visai, L. Sci. World J. 2014, 2014, 410423. https://doi.org/10.1155/2014/410423
  8. Jensen, P. O.; Givskov, M.; Bjarnsholt, T.; Moser, C. FEMS Immunol. Med. Microbiol. 2010, 59, 292-305. https://doi.org/10.1111/j.1574-695X.2010.00706.x
  9. Grant, S. S.; Hung, D. T. Virulence 2013, 4, 273-283. https://doi.org/10.4161/viru.23987
  10. Furiga, A.; Lajoie, B.; El Hage, S.; Baziard, G.; Roques, C. Antimicrob. Agents Chemother. 2015, 60, 1676-1686. https://doi.org/10.1128/AAC.02533-15
  11. Allen, R. C.; Popat, R.; Diggle, S. P.; Brown, S. P. Nat. Rev. Microbiol. 2014, 12, 300-308. https://doi.org/10.1038/nrmicro3232
  12. Defoirdt, T.; Brackman, G.; Coenye, T. Trends Microbiol. 2013, 21, 619-624. https://doi.org/10.1016/j.tim.2013.09.006
  13. Isman, M. B. Crop Prot. 2000, 19, 603-608. https://doi.org/10.1016/S0261-2194(00)00079-X
  14. Goren, A. C.; Bilsel, G.; Bilsel, M.; Demir, H.; Kocabas, E. E. Z. Naturforsch. C. 2003, 58, 687-690. https://doi.org/10.1515/znc-2003-9-1016
  15. Carrasco, A.; Perez, E.; Cutillas, A. B.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Nat. Prod. Commun. 2016, 11, 113-120.
  16. El Abed, N.; Kaabi, B.; Smaali, M. I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M. N.; Ben Hadj Ahmed, S. Evid. Based Complement. Alternat. Med. 2014, 2014, 152487. https://doi.org/10.1155/2014/152487
  17. Faleiro, L.; Miguel, G.; Gomes, S.; Costa, L.; Venancio, F.; Teixeira, A.; Figueiredo, A. C.; Barroso, J. G.; Pedro, L. G. J. Agric. Food Chem. 2005, 53, 8162-8168. https://doi.org/10.1021/jf0510079
  18. Benbelaid, F.; Khadir, A.; Abdoune, M. A.; Bendahou, M.; Muselli, A.; Costa, J. Asian Pac. J. Trop. Biomed. 2014, 4, 463-472. https://doi.org/10.12980/APJTB.4.2014C1203
  19. Qaralleh, H. N.; Abboud, M. M.; Khleifat, K. M.; Tarawneh, K. A.; Althunibat, O. Y. Pak. J. Pharm. Sci. 2009, 22, 247-251.
  20. Althunibat, O. Y.; Qaralleh, H., Al-Dalin, S. Y. A.; Abboud, M.; Khleifat, K.; Majali, I. S.; Aldal'in, H. K. H.; Rayyan, W. A.; Jaafraa, A. J. Pure Appl. Microbiol. 2016, 10, 367-374.
  21. Machado, D.; Gaspar, C.; Palmeira-de-Oliveira, A.; Cavaleiro, C.; Salgueiro, L.; Martinez-de-Oliveira, J.; Cerca, N. Future Microbiol. 2017, 12, 407-416. https://doi.org/10.2217/fmb-2016-0184
  22. Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J. A.; Rodrigues, A. G. J. Ethnopharmacol. 2012, 140, 379-383. https://doi.org/10.1016/j.jep.2012.01.029
  23. Salgueiro, L. R.; Pinto, E.; Goncalves, M. J.; Pina-Vaz, C.; Cavaleiro, C.; Rodrigues, A. G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Martinez-de-Oliveira, J. Planta Med. 2004, 70, 572-575. https://doi.org/10.1055/s-2004-827162
  24. Pekmezovic, M.; Aleksic, I.; Barac, A.; Arsic-Arsenijevic, V.; Vasiljevic, B.; Nikodinovic-Runic, J.; Senerovic, L. Pathog. Dis. 2016, 74, 102. https://doi.org/10.1093/femspd/ftw102
  25. Peixoto, L. R.; Rosalen, P. L.; Ferreira, G. L. S.; Freires, I. A.; de Carvalho, F. G.; Castellano, L. R.; de Castro, R. D. Arch. Oral Biol. 2017, 73, 179-185. https://doi.org/10.1016/j.archoralbio.2016.10.013
  26. Tawaha, K. A., Hudaib, M. M. J. Essent. Oil Bear. Plants 2012, 15, 988-996. https://doi.org/10.1080/0972060X.2012.10662603
  27. Qaralleh, H.; Idid, S.; Saad, S.; Susanti, D.; Taher, M.; Khleifat, K. J. Mycol. Med. 2010, 20, 315-320. https://doi.org/10.1016/j.mycmed.2010.10.002
  28. Hossain, M. A.; Lee, S. J.; Park, N. H.; Mechesso, A. F.; Birhanu, B. T.; Kang, J.; Reza, M. A.; Suh, J.W.; Park, S.C. Sci. Rep. 2017, 7, 10618. https://doi.org/10.1038/s41598-017-10997-5
  29. Krishnan, T.; Yin, W. F.; Chan, K.G. Sensors 2012, 12, 4016-4030. https://doi.org/10.3390/s120404016
  30. Shanks, R. M. Q.; Meehl, M. A.; Brothers, K. M.; Martinez, R. M.; Donegan, N. P.; Graber, M. L.; Cheung, A. L.; O'Toole, G. A. Infect. Immun. 2008, 76, 2469-2477. https://doi.org/10.1128/IAI.01370-07
  31. Rosenberg, M.; Gutnick, D.; Rosenberg, E. FEMS Microbiol. Lett. 1980, 9, 29-33. https://doi.org/10.1111/j.1574-6968.1980.tb05599.x
  32. Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; Chen, Y.PLoS One 2017, 12, e0176883. https://doi.org/10.1371/journal.pone.0176883
  33. Andrejko, M.; Zdybicka-Barabas, A.; Janczarek, M.; Cytrynska, M. Acta Biochim. Pol. 2013, 60, 83-90. https://doi.org/10.18388/abp.2013_1955
  34. Qaralleh, H. N. Bangladesh J. Pharmacol. 2018, 13, 280-286. https://doi.org/10.3329/bjp.v13i3.36897
  35. Fleisher, Z.; Fleisher, A. J. Essent. Oil Res. 2002, 14, 105-106. https://doi.org/10.1080/10412905.2002.9699785
  36. Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chem. Biodivers. 2017, 14, e1600236. https://doi.org/10.1002/cbdv.201600236
  37. Neves, A.; Marto, J.; Duarte, A.; Goncalves, L. M.; Pinto, P.; Figueiredo, A. C.; Ribeiro, H. M. Flavour Fragr. J. 2017, 32, 392-402. https://doi.org/10.1002/ffj.3393
  38. Dzamic, A. M.; Nikolic, B. J.; Giweli, A. A.; Mitic-Culafic, D. S.; Sokovic, M. D.; Ristic, M. S.; Knezevic-Vukcevic, J. B.; Marin, P. D. J. Appl. Microbiol. 2015, 119, 389-399. https://doi.org/10.1111/jam.12864
  39. Carson, C. F.; Hammer, K. A. Lipids and Essential oils as Antimicrobial Agents: Chemistry and Bioactivity of Essential Oils; Thormar, H. Ed; Wiley; Iceland, 2011, pp 203-238.
  40. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A. R.; Abbaszadeh, A. J. Mycol. Med. 2014, 24, e51-e56. https://doi.org/10.1016/j.mycmed.2014.01.063
  41. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Pharmaceuticals 2013, 6, 1451-1474. https://doi.org/10.3390/ph6121451
  42. Tapia-Rodriguez, M. R.; Hernandez-Mendoza, A.; Gonzalez-Aguilar, G. A.; Martinez-Tellez, M. A.; Martins, C. M.; Ayala-Zavala, J. F. Food Control 2017, 75, 255-261. https://doi.org/10.1016/j.foodcont.2016.12.014
  43. Tyfa, A.; Kunicka-Styczynska, A.; Zabielska, J. Acta Biochim. Pol. 2015, 62, 785-790. https://doi.org/10.18388/abp.2015_1133
  44. Bonez, P. C.; Rossi, G. G.; Bandeira, J. R.; Ramos, A. P.; Mizdal, C. R.; Agertt, V. A.; Dalla Nora, E. S. S.; de Souza, M. E.; dos Santos Alves, C. F.; dos Santos, F. S.; Gundel, A.; de AlmeidaVaucher, R.; Vianna Santos, R. C.; de Campos, M. M. A. Microb. Pathog. 2017, 111, 6-13. https://doi.org/10.1016/j.micpath.2017.08.008
  45. Lai, S.; Tremblay, J.; Deziel, E. Environ. Microbiol. 2009, 11, 126-136. https://doi.org/10.1111/j.1462-2920.2008.01747.x
  46. Lee, J.J.; Lee, J. H.; Cho, W.K.; Han, J.H.; Ma, J. Y. BMC Complement. Altern. Med. 2016, 16, 253. https://doi.org/10.1186/s12906-016-1224-8
  47. abed Soumya, E.; koraichi Saad, I.; Hassan, L.; Ghizlane, Z.; Hind, M.; Adnane, R. African J. Microbiol. Res. 2011, 5, 3229-3232. https://doi.org/10.5897/AJMR11.275
  48. Ran, H.; Hassett, D. J.; Lau, G. W. Proc. Natl. Acad. Sci.USA 2003, 100, 14315-14320. https://doi.org/10.1073/pnas.2332354100
  49. Hall, S.; McDermott, C.; Anoopkumar-Dukie, S.; McFarland, A. J.; Forbes, A.; Perkins, A. V.; Davey, A. K.; Chess-Williams, R.; Kiefel, M. J.; Arora, D.; Grant, G. D. Toxins 2016, 8, 236. https://doi.org/10.3390/toxins8080236
  50. Lau, G. W.; Hassett, D. J.; Ran, H.; Kong, F. Trends Mol. Med.2004, 10, 599-606. https://doi.org/10.1016/j.molmed.2004.10.002
  51. Caiazza, N. C.; Shanks, R. M.; O'Toole, G. A. J. Bacteriol.2005, 187, 7351-7361. https://doi.org/10.1128/JB.187.21.7351-7361.2005
  52. Cowell, B. A.; Twining, S. S.; Hobden, J. A.; Kwong, M. S. F.; Fleiszig, S. M. J. Microbiology 2003, 149, 2291-2299. https://doi.org/10.1099/mic.0.26280-0
  53. Ganesh, P. S.; Rai, R. V. J. Med. Microbiol. 2016, 65, 1528-1535. https://doi.org/10.1099/jmm.0.000385
  54. Alvarez, M. V.; Moreira, M. R.; Ponce, A. J. Food Safety 2012, 32, 379-387. https://doi.org/10.1111/j.1745-4565.2012.00390.x
  55. Olivero, J. T.; Pajaro, N. P.; Stashenko, E. Vitae 2011, 18, 77-82.
  56. Olivero-Verbel, J.; Barreto-Maya, A.; Bertel-Sevilla, A.; Stashenko, E. E. Braz. J.Microbiol. 2014, 45, 759-767. https://doi.org/10.1590/S1517-83822014000300001
  57. Alvarez, M. V.; Ortega-Ramirez, L. A.; Gutierrez-Pacheco, M. M.; Bernal-Mercado, A. T.; Rodriguez-Garcia, I.; Gonzalez-Aguilar, G. A.; Ponce, A.; Moreira, M. del R.; Roura, S. I.; Ayala-Zavala, J. F. Front. Microbiol. 2014, 5, 699. https://doi.org/10.3389/fmicb.2014.00699
  58. Sharifi, A.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. J. Appl. Microbiol. 2018, 124, 379-388. https://doi.org/10.1111/jam.13639
  59. Ojo-Fakunle, V. T.; Woertman, J.; Veldhuizen, E. J.; Burt, S. A. Planta Med. 2013, 79, SL51.
  60. Burt, S. A.; Ojo-Fakunle, V. T.; Woertman, J.; Veldhuizen, E. J. PLoS One 2014, 9, e93414. https://doi.org/10.1371/journal.pone.0093414
  61. Myszka, K.; Schmidt, M. T.; Majcher, M.; Juzwa, W.; Olkowicz, M.; Czaczyk, K. Int. Biodeterior. Biodegradation 2016, 114, 252-259. https://doi.org/10.1016/j.ibiod.2016.07.006

Cited by

  1. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications vol.25, pp.18, 2019, https://doi.org/10.3390/molecules25184125
  2. Essential oils mediated antivirulence therapy against vibriosis in Penaeus vannamei vol.529, 2020, https://doi.org/10.1016/j.aquaculture.2020.735639
  3. Evaluation of Antibacterial Activity of Essential Oils and Their Combination against Multidrug-Resistant Bacteria Isolated from Skin Ulcer vol.2021, 2021, https://doi.org/10.1155/2021/6680668
  4. Chemical profile and eco-safety evaluation of essential oils and hydrolates from Cistus ladanifer, Helichrysum italicum, Ocimum basilicum and Thymbra capitata vol.175, 2019, https://doi.org/10.1016/j.indcrop.2021.114232