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Abstract  The aim of the study was to evaluate the effect of an early post-mortem low 
voltage electrical stimulation (ES) to localized part of carcasses [m. longissimus lumborum 
(LL) and m. biceps femoris (BF)] and determined the tenderness and flavor compounds 
of Hanwoo steers (n=16). Carcasses were stimulated within 30 min post-mortem for 60s 
using 60 volts and muscles aged 2 and 14 d. Degradation of Troponin-T were accelerated 
by ES and degraded little faster in BF muscle than LL. Level of free amino acid content 
of stimulated and aged muscles was significantly (p<0.05) greater than control for both 
muscles. Totally 63 volatile compounds were identified by using SPME-GC. The ES 
treatment significantly (p<0.05) affected the level of 20 volatile compounds of LL as 
well 15 volatiles in BF muscle along with total amounts of ketones, sulfur containing, 
pyrazines and furans. Low voltage ES could be applied to reduce the aging time and 
improve volatile flavor development by increasing important desirable volatile compounds 
such as 2-methylpyrazine, 2,5-dimethylpyrazines and 2-acetylthiazole etc. due to released 
free amino acids from protein degradation. 
  
Keywords  beef tenderness, electrical stimulation, aging, amino acids, volatile compounds 

Introduction 

The flavor is one of the most important criterion of acceptability of meat affecting 

consumer purchasing decisions. The characteristics of cooked beef flavor include the 

basic tastes and odor flavors derived from volatile compounds (Ba et al., 2012). The 

main flavor precursor amino acids with reducing sugars determine the kinds of volatile 

compounds generated; reaction between only one amino acid and one sugar will yield 

hundreds of volatile compounds through Maillard reaction and Strecker degradation 

(Elmore et al., 2002; Farmer, 1994). In-mouth perception of flavor and tenderness has 

been documented in relation to post mortem degradation of specific myofibrillar 

proteins which closely linked to the structural changes during aging (Hwang et al.,  
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2003). Protein degradation by enzymes, give rise to protein fragments (Huff-Lonergan et al., 2010b) and releasing taste active 

small peptides free amino acids during aging (Toldra and Flores, 1998). Therefore, the concentration and rate of appearance 

of released amino acids during aging may great determinants of both palatable meat taste and odor. In addition, the resulting 

tenderness and flavor is influenced by muscle type and aging period. The national beef tenderness surveys stated considerable 

variation in the length of postmortem aging periods of beef cuts (Dashdorj et al., 2015). Thus early post mortem electrical 

stimulation (ES) to localized part of carcasses could be used for accelerate beef aging and reduce tenderness variability 

between beef cuts. 

The post slaughter treatment carcass ES is one of the major interventions adopted in the meat industry for enhancing meat 

quality traits (Adeyemi et al., 2014). Cross et al. (1985) reported that application of ES of carcasses bring significant effect on 

the aging periods saving and economic feasibility through improvement of meat tenderness. ES categorized into low voltage 

that is applied ranges from 20 to 120 V, or high voltage that is greater than 120 V. Moreover, an approach to stimulation had 

been developed in Australia based on medium voltages which were favoured over the traditional high voltage systems. 

Researchers suggest that low voltage ES initiates a muscle pH decline similar to that associated with the use of high voltage 

stimulation.  

Many investigations were conducted the influence of ES on meat tenderness (Hwang and Thompson, 2001; Hwang et al., 

2003; Simmons et al., 2008) and other quality traits such as color and water holding properties (Castaneda et al., 2005; Nazli 

et al., 2010; Polidori et al., 1999; Wiklund et al., 2001), while to our knowledge limited information about the effect ES on 

the flavor of cooked meat is available in the scientific literature and the mechanism by which ES enhances flavor has not been 

identified.  

A large number of studies have identified the effectiveness of ES technology to accelerate the tenderization of meat. The 

main factors are operative in increasing the tenderness of stimulated muscles; prevent of cold shortening, increases 

proteolytic action of endogenous, affect the structure of myofibrils during rigor development and physically disrupt muscle 

structure during chiller aging (Hwang and Thompson 2001; Hwang et al., 2003; Nowak et al., 2011). The accelerated pH 

decline caused by ES can increase calpain proteolytic activity (Pearce et al., 2010) and some fibers will enter rigor earlier 

than nonstimulated muscle and age faster (Devine, 2014). However, some authors concluded the key mechanism of ES 

induced tenderization is via direct myofibrillar damage rather than the effect of an accelerated pH decline (Hwang et al., 

2003; Simmons et al., 2008).  

Given that meat flavors are largely determined by proteolytic activity, we hypothesized that early postmortem ES treatment 

improves meat flavor as much as chiller aging through its effect on elevated proteolytic activity. As far as we aware, there is 

no accessible reports whether improvement of meat flavor by ES treatment is compatible with chiller aging. The current study 

was designed to examine the effect of low voltage ES on volatile flavor components and meat quality traits for m. longissimus 

lumborum and biceps femoris muscles from Hanwoo beef. 

 

Material and Methods 

Sample preparation 
A total of 16 Hanwoo commercial steers (n=8) and cow (n=8) were sampled from an industrial population. Animals were 

stunned using a captive bolt and slaughtered in a day at a commercial slaughter house. The mean of carcass weight, back fat 

thickness and rib-eye area were 393 kg, 16 mm and 87 cm2 respectively, and animals were up to 36 months old. After 



Food Science of Animal Resources  Vol. 39, No. 3, 2019 

476 

slaughter, carcasses were immediately moved into a 4℃ chiller room before approximately 30 min post-mortem. Right side 

of each carcass was electrically stimulated with 45 volts (uni-directional square wave pulses of 7 milliseconds width, 14.3 

pps, output: 1.2 to 9 amps) for 60 sec. Multi-point electrode probes were inserted into the muscles at the distal end of the 

biceps femoris and cranial end of longissimus muscle. The corresponding left sides were used as a control side. Sides were 

kept overnight at the 4℃ chiller room. The day following slaughter the longissimus muscle from the 13th thoracic vertebrae to 

the last lumbar vertebrae and biceps femoris muscles were removed from each carcass side and trimmed of all epimysium and 

subcutaneous fat. Each muscle was divided into two blocks; cranial and caudal parts vacuum-packed and was assigned to two 

aging groups; 2 and 14 d of aging at 4℃. 
 

The meat color, cooking loss and Warner-Bratzler shear force (WBSF) 
Meat color, WBSF and cooking loss were determined on the sample steaks approximately 300 g. Meat color evaluated 

with Konica Minolta Spectrophotometer CM-2500d (Sinodevices, Japan) with an 8 mm measuring port, D 65 illuminant and 

10o observer. Three measurements were taken on the 30 min bloomed surface of the beef. After the color measurement, 

determined cooking loss. Approximately the 3 cm thick steaks of 250 g of each sample were placed in plastic bags and heated 

in water bath at 70℃ for until the core temperature had reached 70℃. The cooked samples were cooled in tap water for 30 

min. Samples were reweighed after removed excess moisture. The WBSF values were measured in an Instron Universal 

Testing Machine (Model 3342, USA) on six pieces core samples with 0.5 inch diameter. A crosshead speed was 400 mm/min 

and a 40 kg load cell. Further, the pH and the moisture content analyzed by HR 73 halogen moisture analyzer (Mettler-

Toledo, Switzerland). The intramuscular fat (IMF) content was analyzed using the Soxhlet extraction method. 
 

Troponin-T degradation  
The protein concentration of the sample was adjusted to 2 mg/mL using sample buffer (2× treatment buffer, 2-

mercaptoethanol and bromophenole blue, pH 6.8) and heated at 95℃ for 5 min. Each sample was loaded into 4% Stacking 

Gel and the proteins were separated using 12.5% separating Gel. 20 cm mini gel was run at 100 V. After SDS-PAGE, the 

protein in the gel transferred to 0.2 μm PVDF membranes at 200 mA for 60 min in transfer buffer (10% methanol, 192 mM 

glycine, 25 mM Tris). Subsequently, the membrane blocked by 5% skim milk at room temperature for 1 h. The membrane 

incubated with monoclonal primary antibodies (Monoclonal anti-troponin-T (JLT-12, SIGMA, USA), diluted 1:2,500 in 

TTBS). The bound antibodies were visualized using ECL kit and then the images were taken by Versa Doc 3000 imaging 

system (Bio-Rad, Hercules, USA).  
 

Fatty acid analysis  
Direct transesterification of fatty acid followed the procedure of Rule (1997). GC-FID (Shimadzu, Japan) was used to 

separate and identify the fatty acid components of the samples. Separation of components was carried out on a Fame Wax 

Cap Column (30 m×0.32 mm ID×0.25 um). Flow rate was 0.7 mL/min. Split ratio used was 30:1. The N2, H2 and air were 

used as the carrier gas. The inlet temperature was 250℃ and the oven temperature program was: 50℃ for 1 min, then raised 

to 200℃ at the rate of 25℃ per minute, further increased to 240℃ at 3℃ per min. Then, temperature was held at 240℃ for 

15 min. Detector temperature was 250℃. The each fatty acids were expressed as percentage of the total fatty acids detected 

as standard-fatty acid methyl esters (Marine Oil FAME Mix; Cat No. 35066). 
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Thiobarbituric acid reactive substances (TBARS)  
TBARS was determined by using the method described with Buege and Aust (1978). Homogenized 2.5 g samples with 7.5 

mL distilled water, 25 μL saturated butylated hydroxyansole (BHA) and 10 mL thiobarbituric acid/trichloroacetic acid 

(TBA/TCA) at 11,000×g for 15 s by homogenizer (Ultra-Turrax T25B, IKA, USA). The volume of the homogenate adjusted 

to 30 mL with a TBA/TCA solution and placed in ice. The homogenate was immersed in a 90℃ water bath for 15 min. 

Thereafter, homogenate placed in ice and cooled for 20 min and centrifuged at 3,000×g for 10 min. 1 mL supernatant was 

taken and measured at 531 nm by Ultrospec 2000 spectrophotometer (Pharmacia Biotech, UK). The TBARS value expressed 

as mg malondialdehyde/kg (MDA/kg) of fresh meat. 

 

Total collagen and free amino acids analysis 
The colorimetric determination of hydroxyproline method in Kolar (1990) used as measure of total collagen content. The 

heat solubility of intramuscular collagen determined using the method of Hill (1966).  

 

Amino acid analysis 
Muscles (0.2 g) sonicated with 100% ethyl alcohol containing 0.4% formic acid and centrifuged at 13,000×g for 10 min. 

Chromatography was performed using a HPLC-MS (Agilent 6430, USA). The characterization and quantitative analyses of 

AAs were carried out on Intrada AA 50×3 mm column (Imtakt, USA). The solvent A was acetonitrile : tetrahydrofuran : 25 

mM ammonium formate : formic acid (9/75/16/0.3 v/v/v/v) and B mobile phase was acetonitrile : 100 mM ammonium 

formate (20/80 v/v). HPLC conditions for free amino acids set by following the method of Woodward and Henderson (2007). 

The column temperature was maintained at 40℃, flow rate was 0.6 mL/min and the injection volume was 10 μL. The peaks 

of the individual AAs were identified and quantified based on retention time of the 17 primary AAs mixture standard (Merck, 

Darmstadt, Germany). Final concentration of standard solutions were 90, 225, and 900 pM. The amino acids were quantified 

by using norvaline as an internal standard. 

 

Volatile compounds analysis 
The volatile compounds analyzed by GC/MS, following the method of Ba et al. (2012). The samples were powdered in 

nitrogen using a mini-grinder. A 1 g aliquot of ground meat samples was put in 40 mL headspace vials and sealed with PTFE 

silicone septum. Then heated at 121℃ for 20 min in an autoclave, cooled at room temperature. After equilibration SPME 

needle (Carboxen/PDMS, 75 μm, Supelco Co., USA) inserted into the PTFE/silicone septum and extraction process for 

volatile compounds was carried out at 60 min. The internal standard 2-methyl-3-heptanone (Merck, Darmstadt, Germany) 

was added into vial for volatiles quantification. Then, fiber was retracted and immediately inserted into chromatography 

injection port at 250℃ for 5 min. GC-MS (Agilent Technologies 6890N Network GC System) and A DB-5MS capillary 

column, 30 m×0.25 mm i.d.×0.25 μm film thickness (J & W Scientific, Folcom, USA) were used for all analyses. Carrier gas 

was helium. Flow rate was 1.0 mL/min. Oven program; 5 min holding time was at 40℃ then, increased to 250℃ at a rate of 

8℃/min, it kept 31.25 min at 250℃ and holding time was 5 min. The identification of volatile compounds was carried out by 

comparing their mass spectra with the Mass Spectral Data 7th edition, then a series of n-Alkanes (C8–C20) (Merck, Darmstadt, 

Germany), and authentic compounds of choice were run under the same conditions to get the retention times for the 

identification of volatiles The linear retention index values calculated from the standard alkane retention times. The internal 
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standard 2-methyl-3-heptanone was used for volatiles quantification. 

 

Statistical analysis 
Means of meat quality traits were examined as a function of ES, sex, chiller aging, muscle type and their first and second 

interactions using a generalized liner model (GLM) with a random effect for animal (software 9.3, SAS Institute, Cary, NC, 

USA). When the main effect and/or the first and second interactions were not greatly significant (p>0.05), the effects were 

removed from the final models. The levels of significant for the estimated means were compared using the Duncan’s 

multiple-range test (p<0.05). Subsequent analysis of Pearson’s correlation coefficients and principal component analyses 

were performed by applying PROC CORR and PROC FACTOR engines (Software 9.3, SAS Institute). 

 

Results and Discussion 

Effects of electrical stimulation and chiller aging on meat quality traits  
Means of quality traits of m. longissimus lumborum (LL) and m. biceps femoris (BF) muscles that electrically stimulated 

and aged for 2 and 14 d are documented in Table 1. Result showed that ES treatment significantly (p<0.05) improved WBSF 

of both muscles, while chiller ageing greatly (p<0.05) affected pH, WBSF and TBARS values for both muscles, and color 

CIE a*, CIE b* values for BF. Numerous workers have reported that ES caused muscle contractions and increased the rate of 

glycogen usage (Hwang et al., 2003) that resulted increases the rate of pH decline in m. longissimus during the first 24 h 

postmortem (Kim et al., 2013). Huff-Lonergan et al. (2010b) found that pH differences between ES and control group were 

only from 3.5 to 8.5 hours in postmortem and the pHu measurement at 24 h postmortem showed no difference between the 

stimulated and nonstimulated beef. However, the ultimate pH of both LL and BF muscles varied (p<0.05) between aging 

days. Similar increase in pHu with post-mortem time has been reported in beef; there was linear increase tenderness at 1 to 13 

d of aging with increasing pH (Silva et al., 1999). Although Hwang and Thompson (2003) resulted that due to differential 

aging rates the optimum pH at 70 min postmortem increased with aging time from 5.96 to 6.14 for 1 to 14 d postmortem, 

respectively.  

In terms of color values of muscles, use of ES did not show any effect on the meat color, indicating stable oxygenation 

capacity of myoglobin (Abbasvali et al., 2012; Channon et al., 2005). However, aging time increased color CIE L*, CIE a* 

and CIE b* values (p<0.05) indicating that postmortem aging enhanced the oxygenation of metmyoglobin, thus improved 

meat color up to 14 d aging, while this changes only for BF muscle, color of LL muscle was stable during aging (Table 1). 

Aging has been reported to influence meat color through metmyoglobin accumulation rate, metmyoglobin reduction activity, 

and oxygen consumption rate (Jeremiah et al., 2003; Li et al., 2011) and extent color change during aging was muscle 

dependent.  

Under the current experiment, connective tissue and cooking loss varied between muscles and furthermore these traits was 

not affected by ES and aging (p˃0.05). The loin with higher IMF (p<0.001) and with lower total collagen (p<0.001) was 

potential tender (p<0.001) with lower cooking loss (p<0.001) than silverside (Table 1) in both 2 and 14 d aging. The lower 

amount cooking loss and WBSF a function of the higher fat content for the muscles compare to the others (Dashdorj et al., 

2012; Nishimura et al., 1995).  

WBSF at 2 d post-mortem indicated that ES treatment decreased 1.04 and 0.79 kg for BF and LL, respectively, and the 

improved tenderness for ES-treated muscles continued at 14 d post-mortem, with significantly (p<0.05) lower WBSF (ca., 0.4  
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kg). This result indicated that muscles from the electrically stimulated side more tendered than its non-stimulated counterpart 

and increases effectiveness of tenderness by ES more remarkable during early ageing days. Similar results were demonstrated 

that the low voltage ES accelerated the rate of carcass pH decline and improved objective tenderness of beef (Li et al., 2006; 

Nazli et al., 2010), improved sensory tenderness by 1.3 units even after 30 d aging (Pearce et al., 2010). Polidori et al. (1999) 

reported significant effects of early post mortem low voltage ES (28 V) on meat tenderness in lamb at 7 d aging. In addition, 

different muscles reacted differently to the ES application (Nazli et al., 2010; Polidori et al., 1999) in their rate of postmortem 

glycolysis (Huff-Lonergan et al., 2010b).  

Researchers noted that meat tenderization by ES has been attributed to factors, such as cold shortening prevention through 

acceleration of glycolysis and rigor onset before temperature reaches the cold shortening range (Hwang et al., 2003). A 

secondary effect is accelerated proteolytic activity through enhanced calcium releases, then it causes of physical disruption of 

Table 1. Least square means of physicochemical and quality traits of m. longissimus lumborum and biceps femoris muscles as affected 
by aging and electrical stimulation 

Traits Muscle 
Aging 2 d Aging 14 d 

SEM 
F-value 

Control ES Control ES Aging ES Muscle

pH LL 5.46 5.46 5.54 5.51 0.02 15.9** 0.7 0.7 

BF 5.48 5.49 5.52 5.52 0.01 9.1* 0.1 

WBSF (kg) LL 3.61 2.82 2.47 2.01 0.17 31.7*** 12.9** 37.3***

BF 4.64 3.60 3.63 3.23 0.23 8.5* 9.3* 

Total collagen  
(g/100 g) LL 0.26 0.24 0.31 0.23 0.02 0.66 2.4 96.8***

BF 0.42 0.43 0.48 0.49 0.03 3.36 0.1 

Soluble collagen  
(g/100 g) 

LL 0.09 0.07 0.11 0.08 0.02 0.76 0.01 28.4***

BF 0.18 0.13 0.16 0.22 0.03 1.44 3.1 

Cooking loss (%) LL 16.5 17.5 16.4 17.2 0.55 0.11 2.4 14.3**

BF 20.0 19.2 17.9 18.2 0.87 3.17 0.1 

CIE L* LL 39.7 41.6 41.4 42.2 1.21 1.01 1.4 6.5* 

BF 38.9 38.3 40.2 40.4 0.86 3.92 0.1 

CIE a* LL 18.2 19.4 19.9 18.9 0.61 0.86 0.02 1.1 

BF 19.2 18.6 20.0 20.1 0.54 4.35* 0.2 

CIE b* LL 14.5 15.9 16.3 15.8 0.58 2.01 0.6 5.2* 

BF 14.3 13.7 15.5 15.2 0.55 6.02* 0.7 

Intramuscular fat (%) LL 26.3    2.12   32.6***

BF  7.8    1.04   

Moisture (%) LL 59.0    1.21   44.5***

BF 68.4    0.72   

TBARS (mg MDA/kg) LL 0.21 0.23 0.33 0.33 0.03 12.31** 0.2 0.5 

BF 0.23 0.24 0.31 0.27 0.02 5.86* 0.4 
* p<0.05, ** p<0.01, *** p<0.001. 
ES, electrical stimulation; LL, m. longissimus lumborum; BF, m. biceps femoris; WBSF, Warner-Bratzler shear force; TBARS, thiobarbituric acid 
reactive substances. 
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fiber structure through extreme muscle contractions (Aberle et al., 2001; Hopkins et al., 2006). The acceleration of 

postmortem proteolysis in electrically stimulated meat is mainly due to the increased proteolytic activity of calpains (Hwang 

and Thompson, 2001; Pearce et al., 2010). The calpains degrade key minor muscle proteins, thereby fragmenting the muscle 

structure, which weakens and can be more easily broken down in the mouth (Huff-Lonergan et al., 2010a). In addition, 

Pearce et al. (2010) suggested that ES causes the release of lysosomal protease cathepsins, since cathepsins degrade proteins 

such as actin and myosin however, these are not usually observed to be degraded in stimulated muscle (Hwang et al., 2003). 

Present study compared Troponin T (Tn-T) degradation of ES with that for non-stimulated muscles by using Western 

blotting (Fig. 1) in that the degradation was little faster on ES than aging, with a faster degradation stimulated BF muscles 

than stimulated LL. The observation coincided with a faster activation of μ-calpain for the electrically stimulated muscles 

(data not shown). The post mortem aging was associated with a loss of Tn–T protein which closely linked to the tenderization 

(Hopkins, 2014), a generation of Tn-T peptides and releases amino acids (Mikami et al., 1994). As the meat ages, researchers 

observed changes in the ultrastructure of muscle fibers and degradation of myofibrillar and cytoskeletal proteins such as Tn-

T, Tn-I, titin, desmin, nebulin and vinculin (Devine, 2014; Koohmaraie, 1984; Nowak et al., 2011), caused by proteolytic 

enzymes (Huff-Lonergan et al., 2010b; Koohmaraie et al., 1984). Although Devine (2014) noted that changes in the 

ultrastructure of the stimulated muscle had shown that contracture nodes are formed, accompanied by fibre disruption that 

may facilitate the degradation of the myofibrillar structure during aging and this may be more important in red muscle fibres, 

where the disruption is greatest. It supported by Hertzman et al. (1993) who noted that a more rapid glycolysis early post 

mortem, especially for a red muscle like BF, is induced by ES.  

TBARS value was unaffected by ES treatment, whereas greatly (p<0.05) increased during chiller aging. This finding was 

coincided with a hexanal value, which amount of this volatile greatly (p<0.05) increased for LL, while slight increases 

observed for BF muscles during aging (Table 1). TBARS and hexanal usually used as indicators of lipid oxidation and 

rancidity development in the meat and normally strongly correlated with each other in experimental models of warmed-over 

flavor development (Spanier et al., 1997). Malondialdehyde (MDA) results mainly from the oxidative degradation of 

polyunsaturated fatty acidsthus, fattier meat will have higher MDA levels. However, TBARS values in the current experiment 

were below the critical limit of 0.5 mg MAL/kg meat. Values above 0.5 indicate a level of lipid oxidation products which 

impart a rancid flavor and odor that can be detected by consumers (Wood et al., 2008).  

 

 

Fig. 1. Troponin-T degradation patterns of electrically stimulated (ES) and nonstimulated (C) m. longissimus lumborum and biceps 
femoris muscles from Hanwoo beef, muscles were aged 2 and 14 d. 
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Effects of electrical stimulation and chiller aging on volatile flavor compounds 
A total of 63 volatile compounds identified in cooked LL and BF muscles by using SPME-GC-MS method (Table 2). 

According to their chemical nature, identified volatile compounds were classified into chemical classes, including aldehydes 

(23), alcohols (7), ketones (6), hydrocarbons (17), sulfur containing compounds (4), pyrazines (2) and furans (4). Within 

these chemical classes the major aroma compounds were aldehydes, representing between 51.7% to 58.6% of total volatile 

compounds, followed by hydrocarbons (15% to 23.2%) and alcohols (5.4% to 7.6%). 

Additionally, as far as the individual compounds are concerned; ES treatment significantly (p<0.05) affected the level of 

20 volatile compounds at 2 d post-mortem. ES results greater increase (p<0.05) amounts of aldehydes (pentanal, hexanal, 

heptanal, octanal, propanal, E-2-octenal, nonanal, benzenacetaldehyde, E-2-decenal and E-E-2.4-decadienal), pentanol, 2-

propanone, 2-nonanone, 2-acetylthiazole, 2-methylpyrazine, 2,5-dimethylpyrazine and total of pyrazines in cooked LL 

muscles than nonstimulated. However, amount of 2-methylbutanal, 2-undecenal, dodecane and 1-heptanol in LL muscles 

decreased (p<0.05) by ES. 

For BF muscles, contents of volatiles such as pentanal, furfural, hexadecane, 2-acetylthiazole, 3-acetylpyrrol, 2,5-

dimethylpyrazine greatly (p<0.05) increased by ES treatment, while benzaldehyde, decanal, 1-octen-3-ol, decane and total of 

furans decreased (p<0.05) by this treatment. After 14 d of aging, the acetaldehyde, 2-methylbutanal, hexanal, heptanal, 2-

octenal, nonanal, benzenacetaldehyde, E-2-decenal, undecanal, 2-furanmethanol, 2-propanone, 2-nonanone, decane, 

undecane, dodecane, tetradecane, hexadecane, 2-methylpyrazine, 2-octylfuran and total amount of pyrazins and furans of LL 

muscle showed significant increases (p<0.05), where the quantity was higher on 14 d than 2 d (Table 2), while pentanal, 

octanal, 1-pentanol decreased (p<0.05) by chiller aging. However, for BF muscles the 3-methybutanal, pentanal, furfural, 

benzaldehyde, propanal, decanal, palmitaldehyde, 1-hexanol, 1-octen-3-ol, 2,4-dimethylheptane, dodecane, hexadecane, 

dimethyldisulfide and 2,5-dimethylpyrazine, total of ketones, hydrocarbons, sulfuric compounds and pyrazins greatly 

increased (p<0.05) between aging days. The current data imply that the volatile compounds affected by chiller aging included 

primarily those indicative of Maillard reaction products and lipid oxidation.  

 

Principal components analysis (PCA) 
Additional analysis was extended to the quantities of selected volatile compounds which were significantly affected by 

treatments were subjected to a principal components analysis (PCA). The factor loading of the PCs used the correlation 

coefficient matrix as the calculation base. Fig. 2 shows the loading plots of the volatile compounds and treatments on the first 

two PCs. The PC1 in this plot contributes to 36.7% of the variability of the data, while PC2 contributes to 24.5% of the 

variability of the data. Treatments were separated across PC1 and muscles were separated across PC2. The highest factor 

loading for PC1 was observed in treatment BFES14d followed by LLES14d, LLCon14d, LLES2d, BFES2d, BFCon14d, 

LLCon2d and BFCon2d (BF, Biceps femoris; LL, Longissimus lumborum; ES, electrical stimulated; Con, control; aging, 2 

and 14 d).  

A remarkable change of the PCA2 scores in stimulated and aged 14d BF muscles (BFES14d) were attributed to the highest 

increase of most volatile compounds including E-2-octenal, propanal, acetaldehyde, dimethylpyrazine, dimethyltrisulfide, 2-

hexylfuran, fufural, nonanal, pentanol, 2-octylfuran and 2-acetylthiazole. However, dimethyldisulfide, furanmethanol, 2-

methylpyrazine, 2-methylbutanal, 3-acetylpyrrol, E-E-2.4-decadienal, 3-thiophenemetanol, benzenacetaldehyde and pentanal 

were found in higher concentrations in LLES14d. These facts suggested that the most volatile compounds were correlated to 

electrically stimulated and aged muscles (BFES14d followed by LLES14d). The treatments LLCon14d and LLES2d were 
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Table 2. Effect of electrical stimulation and postmortem aging on development of volatile components of longissimus lumborum and 
biceps femoris muscles  

Volatiles 
(μg/g wet tissue) 

RT 
Muscles 

Aging 2 d Aging 14 d 
SEM

F-value 

LRI Control ES1) Control ES Aging ES Muscle Aging*ES

Acetaldehyde 1.52 LL 0.005 0.007 0.01 0.011 0.03 4.5* 1.58 
0.01 

1.41 

≤800 BF 0.005 0.009 0.007 0.012 0.03 1.39 0.46 0.01 

3-Methylpropanal 2.01 LL 0.009 0.014 0.028 0.011 0.08 0.27 0.06 
0.21 

6.14* 

≤800 BF 0.013 0.012 0.021 0.023 0.01 1.98 0.79 1.25 

3-Methylbutanal 3.55 LL 0.05 0.037 0.029 0.011 0.02 1.17 4.82* 
0.49 

0.02 

≤800 BF 0.013 0.028 0.032 0.035 0.01 4.20* 2.68 3.45 

2-Methylbutanal 3.76 LL 0.081 0.088 0.109 0.09 0.03 3.36* 0.01 
3.86* 

0.02 

≤800 BF 0.055 0.064 0.059 0.071 0.03 0.86 2.14 0.09 

Pentanal 4.55 LL 0.02 0.041 0.018 0.03 0.11 3.86* 4.35* 
1.71 

2 

≤800 BF 0.012 0.021 0.027 0.024 0.01 3.04* 4.71* 2.3 

Hexanal 7.54 LL 0.225 0.335 0.355 0.295 0.07 5.94* 1.69 
2.10 

0.76 

816 BF 0.227 0.29 0.258 0.301 0.08 1.45 0.07 0.02 

Fufural 8.45 LL 0.028 0.044 0.039 0.042 0.01 1.2 1.26 
1.06 

1.45 

875 BF 0.025 0.025 0.039 0.051 0.01 3.32* 4.34* 1.03 

Heptanal 10.38 LL 0.184 0.227 0.292 0.298 0.02 4.52* 2.20* 
0.2 

0.41 

920 BF 0.129 0.194 0.146 0.171 0.01 0.55 1.01 0.01 

(E)-2-Heptenal 11.81 LL 0.014 0.03 0.029 0.011 0.01 0.01 0.04 
0.1 

2.51 

1188 BF 0.015 0.008 0.024 0.035 0.06 2.3 0.99 1.08 

Benzaldehyde 12.01 LL 0.226 0.215 0.325 0.254 0.05 0.79 0.44 
5.55* 

0.42 

1025 BF 0.409 0.347 0.562 0.526 0.13 5.15* 3.68* 2.01 

Octanal 12.89 LL 0.301 0.317 0.239 0.207 0.06 0.23 3.28* 
0.12 

0.94 

1335 BF 0.306 0.323 0.308 0.236 0.1 0.1 0.23 0.26 

Propanal 14.93 LL 0.263 0.399 0.498 0.533 0.07 1.63 7.55* 
0.43 

0.57 

1047 BF 0.304 0.387 0.315 0.541 0.1 3.73* 1.07 0.8 

(E)-2-Octenal 14.13 LL 0.214 0.267 0.317 0.341 0.04 2.76 4.06* 
0.89 

0.11 

1068 BF 0.208 0.236 0.221 0.345 0.05 2.4 1.56 0.95 

Nonanal 15.09 LL 0.549 0.558 0.63 0.561 0.05 1.4 4.53* 
0.1 

0.9 

1128 BF 0.404 0.634 0.627 0.736 0.06 5.12* 0.5 2.53 

Benzenacetaldehyde 13.89 LL 0.034 0.055 0.041 0.056 0.01 2.16 5.02* 
0.4 

0.21 

1189 BF 0.028 0.086 0.033 0.055 0.03 1.75 1.19 0.37 

(E)-2-Nonenal 16.24 LL 0.036 0.043 0.047 0.041 0.01 3.69* 0.86 
2.51 

0.23 

1171 BF 0.024 0.027 0.024 0.032 0.01 0.36 0.07 0.11 

Decanal 17.08 LL 0.02 0.016 0.014 0.013 0.01 0.6 1.66 
1.48 

0.16 

1235 BF 0.017 0.013 0.026 0.018 0.01 4.09* 0.53 2.71 

(E)-2-Decenal 18.13 LL 0.09 0.094 0.034 0.059 0.02 0.37 6.64* 
0.12 

0.11 

1277 BF 0.064 0.06 0.059 0.086 0.2 0.32 0.3 0.66 
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Table 2. Effect of electrical stimulation and postmortem aging on development of volatile components of longissimus lumborum and 
biceps femoris muscles (continued) 

Volatiles 
(μg/g wet tissue) 

RT 
Muscles 

Aging 2 d Aging 14 d 
SEM

F-value 

LRI Control ES1) Control ES Aging ES Muscle Aging*ES

Undecanal 18.73 LL 0.056 0.034 0.069 0.042 0.01 6.78* 1.37 
0.78 

0.07 

 BF 0.064 0.054 0.052 0.064 0.02 0.01 0.01 0.5 

(E, E)-2,4-Decadienal 19.16 LL 0.191 0.121 0.283 0.158 0.03 2.89 6.18* 
0.85 

0.43 

1313 BF 0.127 0.125 0.148 0.168 0.04 3.09 1.12 1.73 

2-Undecenal 19.90 LL 0.069 0.066 0.05 0.038 0.02 2.42 3.82* 
0.7 

0.13 

 BF 0.054 0.044 0.062 0.037 0.01 1.65 0.21 0.07 

Tridecanal 20.63 LL 0.028 0.04 0.029 0.021 0.01 0.02 0.46 
1.61 

0.61 

1745 BF 0.023 0.016 0.029 0.019 0.01 0.41 0.01 0.38 

Palmitaldehyde 26.54 LL 0.121 0.066 0.079 0.061 0.03 1.4 0.56 
5.37* 

0.36 

1800 BF 0.175 0.105 0.243 0.083 0.05 5.48* 0.22 0.84 

Total aldehydes  LL 2.814 3.114 3.564 3.184 0.18 0.03 0.22 
0.5 

1.92 

 BF 2.701 3.108 3.322 3.669 0.29 0.57 1.86 0.35 

1-Pentanol 6.54 LL 0.014 0.021 0.021 0.032 0.01 1.13 4.88* 
0.6 

1.35 

≤800 BF 0.009 0.017 0.011 0.112 0.04 1.29 2.25 1.03 

2-Furanmethanol 9.08 LL 0.021 0.065 0.041 0.075 0.18 3.15* 1.46 
1.12 

0.6 

1028 BF 0.026 0.032 0.037 0.057 0.01 2.78 2.01 1.57 

1-Hexanol 9.48 LL 0.028 0.029 0.039 0.027 0.01 0.55 0.4 
0.6 

0.9 

1296 BF 0.025 0.031 0.028 0.053 0.01 5.19* 0.7 2.94 

1-Heptanol 12.22 LL 0.135 0.106 0.192 0.076 0.02 1.33 3.6* 
0.37 

0.1 

1700 BF 0.106 0.109 0.138 0.103 0.04 1.2 0.13 0.28 

1-Octen-3-ol 12.32 LL 0.049 0.03 0.042 0.032 0.01 1.52 0.4 
3.26* 

0.11 

2593 BF 0.046 0.036 0.09 0.08 0.02 7.16* 3.13* 1.29 

3-Thiophenemetanol 14.93 LL 0.039 0.051 0.054 0.033 0.22 0.05 0.01 
0.64 

0.78 

 BF 0.036 0.026 0.039 0.042 0.01 0.68 0.55 0.25 

1-Octanol 14.11 LL 0.073 0.071 0.069 0.07 0.01 0.01 0.11 
1.52 

0.02 

1071 BF 0.049 0.065 0.063 0.073 0.1 0.52 2.47 0.35 

Total alcohols  LL 0.366 0.384 0.451 0.334 0.25 0.01 0.87 
0.42 

0.1 

 BF 0.297 0.316 0.406 0.52 0.8 2.88 1.48 1.13 

2-Butanone 2.35 LL 0.007 0.005 0.007 0.009 0.02 0.14 0.6 
0.8 

0.93 

≤800 BF 0.007 0.006 0.013 0.01 0.01 0.33 1.63 0.15 

3-Hydroxy-2-
butanone 

4.83 LL 0.009 0.03 0.013 0.004 0.05 0.87 1.64 
1.1 

0.58 

≤800 BF 0.021 0.008 0.013 0.027 0.01 0.03 0.37 1.7 

2-Propanone 1.52 LL 0.048 0.124 0.154 0.159 0.06 3.13* 3.51* 
0.68 

0.97 

≤800 BF 0.046 0.073 0.052 0.169 0.04 2.88 1.48 1.13 

2-Heptanone 10.03 LL 0.014 0.032 0.021 0.024 0.01 1.65 0.3 
1.15 

0.95 

933 BF 0.01 0.024 0.02 0.015 0.01 0.37 0.1 1.19 
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Table 2. Effect of electrical stimulation and postmortem aging on development of volatile components of longissimus lumborum and 
biceps femoris muscles (continued) 

Volatiles 
(μg/g wet tissue) 

RT 
Muscles 

Aging 2 d Aging 14 d 
SEM

F-value 

LRI Control ES1) Control ES Aging ES Muscle Aging*ES

2-Octanone 13.34 LL 0.037 0.037 0.032 0.036 0.01 0.02 0.1 
0.89 

0.1 

1034 BF 0.036 0.044 0.048 0.059 0.02 0.17 0.4 0.01 

2-Nonanone 14.65 LL 0.029 0.033 0.044 0.055 0.01 3.61* 3.52* 
0.1 

0.1 

1139 BF 0.02 0.083 0.015 0.015 0.03 1.09 1.31 0.94 

Total ketones  LL 0.144 0.261 0.271 0.287 0.07 0.1 1.95 
0.6 

0.9 

 BF 0.14 0.238 0.161 0.295 0.06 3.66* 0.25 0.02 

Hexane 3.54 LL 0.012 0.044 0.026 0.009 0.81 0.81 1.68 
0.4 

9.16** 

≤800 BF 0.014 0.014 0.018 0.028 0.1 0.4 1.16 0.43 

Acetic acid 4.48 LL 0.104 0.016 0.117 0.028 0.01 1.41 0.03 
- 

0.01 

≤800 BF - - - - - - - - 

Heptane 4.78 LL 0.076 0.121 0.062 0.058 0.01 0.35 1.61 
4.65* 

0.63 

≤800 BF 0.041 0.044 0.029 0.053 0.02 0.5 0.1 0.33 

Toluene 6.53 LL 0.038 0.058 0.028 0.036 0.02 1.42 1.85 
0.49 

0.31 

≤802 BF 0.019 0.036 0.025 0.066 0.07 2.77 1.07 0.45 

2,4 dimethylheptane 10.45 LL 0.062 0.091 0.146 0.119 0.05 0.01 1.33 
0.1 

0.3 

≤800 BF 0.141 0.237 0.163 0.351 0.01 3.86* 0.9 0.4 

Butanoic acid 11.08 LL 0.026 0.031 0.041 0.033 0.01 0.05 1.46 
- 

0.77 

≤801 BF - - - - - - - - 

4 Methyloctane 14.38 LL 0.214 0.143 0.155 0.24 0.07 0.01 0.06 
- 

1.06 

1097 BF - - - - - - - - 

3-Methyldodecane 15.51 LL 0.217 0.164 0.237 0.247 0.01 0.06 0.32 
0.4 

0.13 

1110 BF 0.181 0.279 0.188 0.35 0.01 2.49 0.24 0.15 

2-Methylundecane 16.45 LL 0.09 0.094 0.154 0.142 0.03 0.01 1.78 
- 

0.03 

1113 BF - - - - - - - - 

Decane C10 12.58 LL 0.025 0.028 0.032 0.04 0.1 5.31* 0.01 
4.18* 

5.98* 

1421 BF 0.033 0.025 0.045 0.039 0.01 0.91 3.57* 0.03 

Undecane C11 14.96 LL 0.129 0.151 0.206 0.163 0.05 4.27* 0.81 
3.07* 

0.43 

1121 BF 0.148 0.074 0.17 0.141 0.03 1.1 0.02 2.74 

Dodecane C12 16.92 LL 0.024 0.025 0.036 0.026 0.01 4.72* 3.31* 
2.0 

0.06 

1421 BF 0.037 0.028 0.038 0.058 0.02 4.43* 2.12 2.35 

Tridecane C13 18.74 LL 0.078 0.046 0.063 0.062 0.01 1.15 0.01 
1.91 

1.01 

1323 BF 0.08 0.066 0.079 0.071 0.03 0.92 0.5 0.6 

Tetradecane C14 20.42 LL 0.026 0.072 0.029 0.034 0.03 4.81* 0.39 
0.7 

0.51 

1386 BF 0.027 0.034 0.03 0.029 0.01 0.06 0.2 0.14 

Pentadecane C15 22.01 LL 0.035 0.026 0.047 0.038 0.01 1.4 2.35 
1.13 

0.01 

1491 BF 0.035 0.069 0.037 0.083 0.03 1.83 1.01 0.1 
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Table 2. Effect of electrical stimulation and postmortem aging on development of volatile components of longissimus lumborum and 
biceps femoris muscles (continued) 

Volatiles 
(μg/g wet tissue) 

RT 
Muscles 

Aging 2 d Aging 14 d 
SEM

F-value 

LRI Control ES1) Control ES Aging ES Muscle Aging*ES

Hexadecane C16 23.52 LL 0.012 0.046 0.031 0.086 0.02 3.4* 1.49 
0.54 

0.2 

1600 BF 0.016 0.019 0.017 0.085 0.02 4.9* 4.23* 3.98* 

Heptadecane C17 24.93 LL 0.031 0.016 0.019 0.023 0.01 0.33 0.07 
1.42 

0.99 

1700 BF 0.058 0.038 0.027 0.017 0.03 0.35 1.06 0.03 

Total hydrocarbons  LL 1.199 1.172 1.429 1.384 0.05 0.14 2.71 
0.2 

0.02 

 BF 0.83 0.963 0.866 1.371 0.21 5.45* 0.3 1.95 

Dimethyltrisulfide  LL 0.045 0.05 0.061 0.068 0.01 2.18 0.4 
0.1 

3.47* 

≤800 BF 0.046 0.048 0.051 0.096 0.06 2.2 2.62 1.73 

Dimethyldisulfide 5.87 LL 0.022 0.028 0.038 0.031 0.05 1.5 0.1 
0.1 

1.44 

1864 BF 0.015 0.02 0.024 0.027 0.01 0.79 1.47 0.07 

2-Acetylthiazole 13.28 LL 0.018 0.024 0.019 0.03 0.01 2.38 6.08* 
4.07* 

12.53* 

1030 BF 0.033 0.046 0.039 0.054 0.01 1.61 4.73* 2.01 

3-Acetylpyrrol 14.22 LL 0.054 0.062 0.057 0.057 0.1 0.17 0.8 
5.56* 

0.86 

1071 BF 0.014 0.032 0.021 0.038 0.01 4.47* 2.1 0.54 

Total sulfur containing  LL 0.139 0.179 0.175 0.186 0.02 2.04 1.11 
1.39 

1.66 

 BF 0.108 0.146 0.135 0.215 0.03 4.39* 2.65* 0.8 

2-Methylpyrazine 8.24 LL 0.096 0.176 0.228 0.365 0.07 4.74* 5.97* 
13.6**

0.76 

868 BF 0.056 0.097 0.08 0.115 0.01 2.1 1.11 1.08 

2,5-Dimethylpyrazine 10.67 LL 0.01 0.018 0.036 0.036 0.01 2.29 5.27* 
1.0 

0.92 

912 BF 0.01 0.016 0.027 0.046 0.2 3.46* 12.16** 1 

Total pyrazines  LL 0.11 0.19 0.25 0.4 0.07 3.87* 6.61* 
10.6**

1.2 

 BF 0.066 0.113 0.127 0.161 0.2 3.74* 1.32 1.71 

2-Pentylfuran 12.66 LL 0.165 0.152 0.105 0.101 0.04 0.6 2.43 
5.7* 

0.2 

1007 BF 0.218 0.16 0.42 0.223 0.01 2.01 2.17 0.6 

2-Hexylfuran 14.79 LL 0.085 0.078 0.096 0.095 0.01 0.4 1.9 
0.64 

0.1 

1110 BF 0.078 0.093 0.082 0.103 0.02 2.03 1.3 0.04 

2-Heptylfuran 16.78 LL 0.018 0.019 0.023 0.013 0.01 0.97 0.6 
4.8* 

1.2 

1317 BF 0.037 0.019 0.021 0.039 0.01 0.01 0.1 3.15* 

2-Octylfuran 18.65 LL 0.114 0.123 0.219 0.176 0.04 3.87* 1.6 
0.2 

0.4 

1615 BF 0.205 0.145 0.19 0.236 0.1 0.01 0.54 1.04 

Total furans  LL 0.382 0.372 0.443 0.385 1 4.97* 0.1 
8.62* 

0.1 

 BF 0.538 0.417 0.713 0.601 0.1 1.83 4.44* 0.01 
* p<0.05, ** p<0.01, *** p<0.001. 
RT, retention time (min); LRI, linear retention indices of authentic compounds with the GC/MS system (DB-5); ES, electrical stimulation; LL, m. 
longissimus lumborum; BF, m. biceps femoris. 
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strongly correlated only with the 2-methylbutanal and E-2-decenal respectively. Several compounds such as benzaldehyde, 1-

octen-3-ol, 2-pentylfuran and decanal were correlated with chiller aging. 

It is well known that raw meat has little aroma and blood-like taste, and that the taste and odor of cooked meat is thermally 

developed during heating, mainly from the interactions of flavor precursors, including peptides, free amino acids, reducing 

sugars, nucleotides, lipid and vitamins (Ba et al., 2012; Dashdorj et al., 2015). The volatile flavor compounds can be divided 

into two groups, those formed from the Maillard reaction and those formed from lipid oxidation. Out of more than 1,000 

volatiles identified in cooked meat, but only few have been characterized as strong meat like and or roast aroma impact 

compounds. In general, the meaty and roast aromas are frequently associated with sulfur containing compounds, pyrazines, 

thiophenes and thiazoles that have very low odor thresholds and hence are of vital importance to the meat aroma (Ho, 1996). 

The most important reaction responsible for these desirable volatile compounds is Maillard reaction and interaction between 

 

Fig. 2. Scatter plot of principal components analysis (PCA) for selected volatile flavor components as a function of electrical stimulation 
and chiller aging for longissimus and biceps femoris muscles. BF, m. biceps femoris; LL, m. longissimus lumborum; ES, electrical stimulated; 
Con, control; aging, 2 and 14 d.  
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Maillard reaction products with lipid oxidation/degradation products (Ba et al., 2012; Elmore et al., 2002). Especially amino 

acids can undergo Strecker degradation to produce Strecker products. Strecker degradation by sulphur-containing amino acids 

such as cystein, cystin and methionine produce the other important intermediate products sulfuric and nitrogen containing 

compounds, thereafter these intermediate products can further react with other compounds or with each other to produce low 

and high molecular weight end flavor compounds (Ba et al., 2012). Otherwise the reaction of other nonsulfur containing 

amino acids with sugars produces nitrogen-containing products such as pyrazines. Thus, protein degradation products; 

peptides and amino acids formed during aging in meat upon the activity of enzymes are very important fractions in volatiles 

synthesis (Toldra and Flores, 1998). 

The heterocyclic pyrazines are products from Maillard reactions generally contain pleasant nutty and roasted aromas. Data 

presented in Table 3 indicated that 2-methylpyrazine strongly correlated to valine (r=0.59; p<0.05), weakly to alanine 

(r=0.23), asparagine (r=0.24) and lysine (r=0.24), while 2.5-dimethylpyrazine correlated to phenylalanine (r=0.29) and 

alanine (r=0.20). The results agree with the findings of Li et al. (2006) who documented that 2-methylpyrazine and 2-

dimethylpyrazine formation probably results from the condensation of two molecules of α-ketone derived from the Strecker 

degradation between an amino acid and α-carbonyl compounds. The pyrazine was mostly produced by alanine and 

phenylalanine while methylpyrazine was driven valine reaction following by phenylalanine and methionine reaction. 

Moreover, deamidation of glutamine, asparagine and both α-and ɛ-amino groups of lysine also could involve in the pyrazine 

formation under the conditions of Maillard reaction (Ho, 1996). The proportion of pyrazine compounds increase in cooked 

meat as influenced by aging time; with longer aging resulting in higher values probably due to increases in sugars and free 

amino acids associated with aging (Elmore et al., 2004).  

The sum of sulfur containing compounds contribute to meaty flavor notes (dimethyltrisulfide, dimethyldisulfide, 2-

acetylthiazole and acetlpyrrol) were collectively found to be greatest (p<0.05) in stimulated BF steaks. Moreover sulphur-

containing amino acid methionine was significantly correlated dimethyltrisulfide (r=0.35, p<0.05) and a weak positive 

correlation was observed with dimethyldisulfide (r=0.26), 2-acetylthiazole (r=0.25) and 3-thiophenemethanol (r=0.29)  

 
Table 3. Pearson’s correlation coefficients between free amino acids and volatile compounds associated with general meaty and roast 
aromas 

Gly Ala Ser Pro Val Thr Leu Ile Asp Lys Glu Met His Phe Arg Tyr

3-Methylpropanal 0.32* 0.22 0.15 0.09 0.22 0.26 0.28 0.22 0.44** 0.23 0.14 0.19 0.28 0.20 0.28 0.19

3-Methylbutanal –0.04 0.11 –0.10 0.04 –0.04 –0.05 0.28 0.22 0.02 –0.06 0.02 –0.05 –0.09 –0.06 –0.05 –0.12

2-Methylbutanal 0.02 0.16 0.28 0.19 0.08 0.24 0.23 0.26 0.10 0.23 0.17 0.13 0.10 0.11 0.11 0.04

Dimethyltrisulfide 0.09 0.17 0.29 0.23 0.25 0.29 0.29 0.29 0.38* 0.19 –0.05 0.35* 0.21 0.31* 0.35* 0.33*

2-Acetylthiazole 0.16 –0.19 –0.01 –0.12 0.22 0.11 0.23 0.25 –0.16 –0.01 0.15 0.25 0.11 0.21 0.04 0.14

3-Acetylpyrrol –0.08 0.04 0.41* 0.20 0.13 0.25 0.15 0.10 0.10 0.10 0.30 0.16 0.25 0.15 0.05 0.12

Dimetdisulfide –0.06 –0.15 –0.03 –0.04 0.19 0.05 0.22 0.24 0.02 –0.08 –0.05 0.26 0.06 0.23 0.11 0.18

2-Methylpyrazine –0.01 0.23 0.08 –0.10 0.59* 0.05 0.05 0.05 0.24 0.24 0.07 –0.01 0.09 –0.01 0.06 –0.08

2,5-Dimet.pyrazine 0.10 0.20 0.07 –0.08 0.25 0.15 0.29 0.30 –0.02 –0.03 0.07 0.32* 0.08 0.29 0.07 0.21

2-Furanmethanol 0.07 0.23 0.51** 0.28 0.57** 0.59** 0.62*

* 
0.60*

* 0.62** 0.44* 0.21 0.60** 0.50** 0.62** 0.52** 0.56**

3Thiophenemethanol 0.17 0.04 0.04 0.09 0.07 0.02 0.11 0.01 0.21 0.08 0.32* 0.29 0.01 0.22 0.01 0.21

* p<0.05, ** p<0.01, *** p<0.001. 
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respectively (Table 3). This is consistent with the findings of Watanabe et al. (2015) who reported that 2-acetylthiazole and 

dimethyltrisulfide can be produced by pyruvaldehyde from acetaldehyde and sulfur containing free amino acids. Thiazole 

formation probably involves the reaction of dicarbonyls, or hydroxyketones with hydrogen sulphide and ammonia, formed 

via the hydrolysis or Strecker degradation of Cys2, and aldehydes (Mottram, 1998). 

The methyl branched aldehyde 3-methylbutanal is known to be able to give rise to bacon-like flavor via reactions with 

sulphur-containing compounds such as cysteine and methionine (Elmore et al., 2004). Formation of 2-methylpropanal, 2-

methylbutanal (with fruity odor) and 3-methylbutanal are often arises from Strecker degradation of the amino acids including 

valine, isoleucine and leucine respectively (Elmore et al., 2004; Ho, 1996). Similar results were found in the present study 

where the amount of 2-methylpropanal was correlated to valine (r=0.22), whereas 2-methylbutanal to isoleucine (r=0.26), 3-

methylbutanal to leucine (r=0.28) respectively (Table 3). 

Interestingly, the 2-furanmethanol correlated (p<0.05) with most amino acids except glycine (Table 3). The methyl 

branched alcohols 2-furanmethanol, 3-thiophenemethanol are probably derived from the Strecker degradation of amino acids 

(Elmore et al., 2004). Although Watanabe et al. (2015) and Chen et al. (2004) reported that thermal degradation from RNA 

and ATP generates furfural whereas 2-furanmethanol derived from thermal degradation of deoxyribose from DNA. The 

increases in furfural and the relatively consistent quantity of 2-furanmethanol during aging probably linked to the more 

stability of DNA than RNA and ATP. Thus, ES may speed up muscle pH fall and depletes muscle energy reserves. By 

changing concentrations of precursors such as reducing sugars, nucleotides and amino acids would be expected to influence 

eventual flavor (Chen et al., 2004; Watanabe et al., 2015). 

Pearson correlation coefficients between selected unsaturated fatty acids with aldehydes and furans which occur in cooked 

beef through the thermal oxidation of fatty acids are shown in Table 4. Among aldehydes the hexanal (r=–0.39; p<0.05), 

heptanal (r=–0.32; p<0.05), octanal (r=–0.32; p<0.05), nonanal (r=0.25), propanal (r=–0.39; p<0.05), decanal (r=–0.44; 

p<0.05), (E)-2-octenal (r=–0.36; p<0.01), (E)-2-decenal (r=–0.32; p<0.05), benzaldehyde (r=–0.31; p<0.05), 2-undecenal 

(r=–0.20) and benzenacetaldehyde (r=–0.29) negatively associated with oleic acid. The (E)-2-octenal (r=–0.40; p<0.01), 

propanal (r=–0.30; p<0.05), pentanal (r=–0.20), hexanal (r=–0.23), heptanal (r=–0.28), (E)-2-heptenal (r=–0.25), 2-undecenal 

(r=–0.26) correlated with linoleic acid (C18:2) while the benzaldehyde correlated (r=–0.34; p<0.05) to linolenic acid (C18:3). 

In terms of furans, the 2-pentylfuran and 2-hexylfuran significantly associated with linoleic acid (r=–0.45; r=–0.35; p<0.05 

respectively), weakly with oleic acid (r=0.26; r=0.22 respectively), 2-2-pentylfuran correlated to linolenic acid (r=0.22) while 

2-octylfuran correlated only to oleic acid (r=0.20).   

The lipid oxidation/degradation is very important as the Maillard reaction for the formation of flavor in cooked meat (Ba et 

al., 2012; Elmore et al., 2002). It has been suggested that the basic species-specific differences in the aroma of cooked meats 

are mainly due to concentration and compositional differences in lipid-derived flavor substances (Elmore et al., 2002). The 

volatiles including aldehydes, hydrocarbons, ketones, alcohols and carboxylic acids derived from lipid degradation have been 

found in cooked meat (Ba et al., 2012). Within these compounds the saturated and unsaturated aldehydes produced by 

oxidation of unsaturated fatty acids such as oleic (C18:1), linoleic (C18:2), and linolenic acids (C18:3) is the major source of 

volatile compounds in cooked meat (Cerny, 1992; Elmore et al., 1999). The oxygen-containing heterocyclic furans known to 

have a caramel-like aroma also arise from fatty acid oxidation (Mottram, 1998).  

The hydrocarbons, ketones, alcohols and carboxylic acids often associated with lipid oxidation and were affected by aging. 

However, hydrocarbons, alcohols and ketones with higher detection threshold contribute less significantly to flavor 

development, only few alcohols and ketones partly contribute to the flavor of cooked meat (Ba et al., 2012). Both types of  
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lipid thermal oxidation and autoxidation would form these compounds, but time-dependent changes could be mainly 

explained by autoxidation during storage (Watanabe et al., 2015). Therefore, meat chiller aging could result in increases of 

important flavor compounds however a longer aging period may negatively influence the flavor quality of cooked meat. 

In current study chiller aging had a large influence on the amount of amino acids. Total amount of amino acids of 

electrically stimulated muscles greatly increased (p<0.05) during aging (from 589.1 to 809.6 μg/g for chiller aging and from 

614.1 to 846.1 μg/g for ES group respectively, data not shown). The all amino acid concentration was not significantly but 

apparently higher in ES treated groups than aging groups. It could be suggested that the differences in the content of amino 

acids are probably due to the different in enzyme activity between groups. Similar results were reported by Mikami et al. 

(1994) who noted that low voltage ES (40 V and 13.8 Hz) increased level of small peptides and free amino acids. These 

researchers also noted that origins of these flavor precursors are derived from myofibrillar proteins as well as sarcoplasma. 

Sekikawa et al. (1999) presumed that ES had an effect not only on proteases but also on other enzymes such as transaminase 

and lysosomal enzymes. The lysosomal enzymes released by ES acted more rapidly on the meat. Huff-Lonergan et al. 

(2010b) stated that calpains catalyze the release of filaments from the myofibril that had amino acids, also provide to the 

proteasome and lysosomes for complete free amino acids degradation. Sekikawa et al. (1999) reported that aminopeptidase 

Table 4. Pearson’s correlation coefficients between selected volatile compounds and fatty acids of BF muscles 

C18:1 C18:2 C18:3 

Acetaldehyde –0.19 –0.27 –0.11 

Pentanal –0.1 –0.20 0.1 

Hexanal –0.39* –0.23 0.16 

Furfural –0.21 –0.10 –0.33* 

Heptanal –0.32* 0.28 0.10 

(E)-2-Heptenal –0.33* 0.25 –0.26 

Benzaldehyde –0.31* 0.34* 0.24 

Octanal –0.32* 0.12 –0.05 

Propanal –0.39* –0.30* 0.06 

(E)-2-Octenal –0.36* 0.40** –0.01 

Nonanal –0.25 0.12 0.19 

Benzenacetaldehyde –0.29 –0.21 –0.10 

(E)-2-Nonenal 0.21 –0.08 –0.19 

Decanal –0.44* 0.16 –0.03 

(E)-2-Decenal –0.32* 0.18 –0.13 

Undecanal –0.20 0.07 –0.09 

(E,E)-2,4-Decadienal 0.26 0.15 –0.13 

2-Undecenal –0.20 –0.02 –0.26 

2-Pentylfuran 0.26 –0.45** 0.22 

2-Hexylfuran 0.22 –0.35* 0.07 

2-Heptylfuran –0.16 0.16 –0.01 

2-Octylfuran 0.20 0.04 0.16 
* p<0.05, ** p<0.01, *** p<0.001. 
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activity in beef decreased with storage.  

Interestingly, level of some compounds, including hexanal, octanal, 2-undecenal, 1-heptanol, 3-thiophenemethanol, 

tetradecane, heptanes of electrically stimulated LL muscles decreased (p<0.05) after 14 d aging, whereas these changes were 

not observed in stimulated BF muscles and control samples. There have been reports of Elmore et al. (2002) reported that 

difference in IMF content between muscles was related to flavor intensity of beef due to its contribution to the formation of 

volatile compounds by means of lipid oxidation. Lower fat content beef was related with greater quantities of volatile 

compounds due to the solubility of volatile aroma compounds in lipids. Although differences between muscles in the activity 

of some enzymes involved in the oxidative defense system of muscle, there may be differences in the antioxidant defense 

system between muscles would influence calpain activity and proteolysis (Huff-Lonergan et al., 2010a). Adeyemi and Sazili 

(2014) reported that the heterogeneous nature of muscle substantiates the variation and complexity in their response to ES.  

Present study reports for the first time the effect of the ES on formation of volatile compounds in cooked Hanwoo beef. ES 

treatment might effective on increasing level of flavor precursors such as amino acid, reducing sugars and nucleotide 

contents, thereby acting the increase in percentages of important sulfurous and nitrogen containing volatile compounds which 

considered being principal contributors to meat flavor. In particular, for BF muscles the effects of ES were more significant 

and outstanding than that of chiller ageing.  

 

Conclusion  

The current data demonstrated that early post mortem low voltage ES to localized part of carcasses using ES (60 V/60 s) 

improved tenderness of important beef muscles without any negative effects on other quality traits. ES accelerated formation 

of important favorable volatiles such as 2-methylpyrazine and 2,5-dimethylpyrazines, 2-acetylthiazole, 3-methylbutanal, 2-

methylbutanal other some Strecker aldehydes of cooked beef which was greatly differed from these formed during chiller 

ageing. The current data implied that ES treatment improved volatile flavor development by largely different pathways 

compared with that of chiller aged muscles.  
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