DOI QR코드

DOI QR Code

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F. (Department of Chemistry, Kerman Branch, Islamic Azad University) ;
  • Shahidi, M. (Department of Chemistry, Kerman Branch, Islamic Azad University) ;
  • Foroughi, M.M. (Department of Chemistry, Kerman Branch, Islamic Azad University) ;
  • Kazemipour, M. (Department of Chemistry, Kerman Branch, Islamic Azad University)
  • Received : 2018.07.22
  • Accepted : 2018.10.29
  • Published : 2019.06.30

Abstract

The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.

Keywords

E1JTC5_2019_v10n2_148_f0001.png 이미지

Fig. 1. Schematic representation of diffusion into the coating: (a) coating without filler; (b) coating with nanoparticle filler [24].

E1JTC5_2019_v10n2_148_f0002.png 이미지

Fig. 2. FESEM image of Nd2O3 nanorods.

E1JTC5_2019_v10n2_148_f0003.png 이미지

Fig. 3. X-ray diffraction patterns of Nd2O3 nanorods.

E1JTC5_2019_v10n2_148_f0004.png 이미지

Fig. 4. Nyquist plots of the PPy coated AA2024 Al alloy without (blank) and with various nanosized metal oxides recorded at (a) 5 h, (b) 24 h and (c) 72 h after immersion in 0.1 M H2SO4 solution.

E1JTC5_2019_v10n2_148_f0005.png 이미지

Fig. 5. Equivalent circuit.

E1JTC5_2019_v10n2_148_f0006.png 이미지

Fig. 6. The plots of Rct obtained from EIS measurements for different coating samples after immersion in 0.1 M H2SO4 solution as a function of exposure time.

E1JTC5_2019_v10n2_148_f0007.png 이미지

Fig. 7. Linear Polarization plots of the PPy coated AA2024 Al alloy without (blank) and with different nanosized metal oxides recorded at (a) 5 h, (b) 24 h and (c) 72 h after immersion in 0.1 M H2SO4 solution.

E1JTC5_2019_v10n2_148_f0008.png 이미지

Fig. 8. The plots of Rp obtained from LPR measurements for different coating samples after immersion in 0.1 M H2SO4 solution as a function of exposure time.

E1JTC5_2019_v10n2_148_f0009.png 이미지

Fig. 9. Nyquist plots of the PPy coated AA2024 Al alloy without (blank) and with various nanosized metal oxides recorded at (a) 1 d, (b) 18 d and (c) 28 d after immersion in 3.5% NaCl solution.

E1JTC5_2019_v10n2_148_f0010.png 이미지

Fig. 10. The plots of Rct obtained from EIS measurements for different coating samples after immersion in 3.5% NaCl solution as a function of exposure time.

E1JTC5_2019_v10n2_148_f0011.png 이미지

Fig. 11. Linear Polarization plots of the PPy coated AA2024 Al alloy without (blank) and with different nanosized metal oxides recorded at (a) 1 d, (b) 18 d and (c) 28 d after immersion in 3.5% NaCl solution.

E1JTC5_2019_v10n2_148_f0012.png 이미지

Fig. 12. The plots of Rp obtained from LPR measurements for different coating samples after immersion in 3.5% NaCl solution as a function of exposure time.

Table 1. The calculated thickness of different PPy films synthesized at scan rate of 100 mV/s and 25 cycle numbers.

E1JTC5_2019_v10n2_148_t0001.png 이미지

Table 2. Impedance parameters of the PPy coated AA2024 Al alloy at different periods of immersion in 0.1 M H2SO4 solution.

E1JTC5_2019_v10n2_148_t0002.png 이미지

Table 3. Linear polarization parameters of the PPy coated AA2024 Al alloy at different periods of immersion in 0.1 M H2SO4 solution

E1JTC5_2019_v10n2_148_t0003.png 이미지

Table 4. Impedance parameters of the PPy coated AA2024 Al alloy at different periods of immersion in 3.5% NaCl solution.

E1JTC5_2019_v10n2_148_t0004.png 이미지

Table 5. Linear polarization parameters of the PPy coated AA2024 Al alloy at different periods of immersion in 3.5% NaCl solution.

E1JTC5_2019_v10n2_148_t0005.png 이미지

References

  1. O. Schneider, R.G. Kelly, Corros. Sci. 2007, 49(2), 594-619. https://doi.org/10.1016/j.corsci.2006.06.006
  2. N. Birbilis, R.G. Buchheit, J Electrochem. Soc, 2005, 152(4), B140-B151. https://doi.org/10.1149/1.1869984
  3. M.J. Bahrami, S.M.A. Hosseini, M. Shahidi, Electrochim. Acta, 2014, 148, 249-260. https://doi.org/10.1016/j.electacta.2014.10.029
  4. O. Schneider, R.G. Kelly, Corros. Eng. Sci. Techn., 2003, 38(2), 119-128. https://doi.org/10.1179/147842203767789195
  5. O. Schneider, G.O. Ilevbare, J.R. Scully, R.G. Kelly, J Electrochem. Soc, 2004, 151(8), B465-B472. https://doi.org/10.1149/1.1764781
  6. G.O. Ilevbare, O. Schneider, R.G. Kelly, J.R. Scully, J. Electrochem. Soc, 2004, 151(8), B453-B464. https://doi.org/10.1149/1.1764780
  7. W. Zhang, G.S. Frankel, Electrochim. Acta, 2003, 48(9), 1193-1210. https://doi.org/10.1016/S0013-4686(02)00828-9
  8. E.A. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Corros. Sci, 2012, 62, 22-33. https://doi.org/10.1016/j.corsci.2012.03.039
  9. A. Foyet, T.H. Wu, A. Kodentsov, L.G.J.v.d. Ven, G.d. With, R.A.T.M.v. Benthem, J. Electrochem. Soc, 2013, 160(4), C159-C167. https://doi.org/10.1149/2.086304jes
  10. M. Ates, J. Adhes. Sci. Technol., 2016, 30(14), 1510-1536. https://doi.org/10.1080/01694243.2016.1150662
  11. K. Kamaraj, V. Karpakam, S. Syed Azim, S. Sathiyanarayanan, Synth. Met., 2012, 162(5-6), 536-542. https://doi.org/10.1016/j.synthmet.2012.01.022
  12. S. Biallozor, A. Kupniewska, Synth. Met., 2005, 155(3), 443-449. https://doi.org/10.1016/j.synthmet.2005.09.002
  13. T.J. Pan, X.W. Zuo, T. Wang, J. Hu, Z.D. Chen, Y.J. Ren, J. Power Sources, 2016, 302, 180-188. https://doi.org/10.1016/j.jpowsour.2015.10.027
  14. D.O. Flamini, M.I. Valle, M.J. Sandoval, V.L. Massheimer, S.B. Saidman, Mater. Chem. Phys., 2018, 209, 76-85. https://doi.org/10.1016/j.matchemphys.2018.01.065
  15. H. Arabzadeh, M. Shahidi, M.M. Foroughi, J. Electroanal. Chem., 2017, 807, 162-173. https://doi.org/10.1016/j.jelechem.2017.11.019
  16. E.T. Miller, K.J. Benally, S.D. GreyEyes, J.T. McKenzie, J. Undergrad. Chem. Res., 2014, 13, 1-10.
  17. J.I. Martins, S.C. Costa, M. Bazzaoui, G. Goncalves, E. Fortunato, R. Martins, Electrochim. Acta, 2006, 51(26), 5802-5810. https://doi.org/10.1016/j.electacta.2006.03.015
  18. W. Su, J.O. Iroh, Synth. Met., 2000, 114(3), 225-234. https://doi.org/10.1016/S0379-6779(99)00306-9
  19. M. Sharifirad, A. Omrani, A.A. Rostami, M. Khoshroo, J. Electroanal. Chem, 2010, 645(2), 149-158. https://doi.org/10.1016/j.jelechem.2010.05.005
  20. M.B. Gonzalez, S.B. Saidman, Prog. Org. Coat., 2015, 78, 21-27. https://doi.org/10.1016/j.porgcoat.2014.10.012
  21. F. Wolfart, D.P. Dubal, M. Vidotti, R. Holze, P. Gomez-Romero, J. Solid State Electrochem., 2016, 20(4), 901-910. https://doi.org/10.1007/s10008-015-2960-2
  22. D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, J. Mater. Chem., 2012, 22(7), 3044-3052. https://doi.org/10.1039/c2jm14470k
  23. S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, Chem. Soc. Rev, 2000, 29(5), 283-293. https://doi.org/10.1039/a807124a
  24. D.E. Tallman, K.L. Levine, C. Siripirom, V.G. Gelling, G.P. Bierwagen, S.G. Croll, Appl. Surf. Sci, 2008, 254(17), 5452-5459. https://doi.org/10.1016/j.apsusc.2008.02.099
  25. Y. Zhang, H. Zhu, C. Zhuang, S. Chen, L. Wang, L. Dong, Y. Yin, Mater. Chem. Phys., 2016, 179, 80-91. https://doi.org/10.1016/j.matchemphys.2016.05.012
  26. H. Xiao, L.T. Han, C.C. Lee, F. Mansfeld, Corrosion, 1997, 53(5), 412-422. https://doi.org/10.5006/1.3280484
  27. J.F. Chen, W.F. Bogaerts, Corrosion, 1996, 52(10), 753-759. https://doi.org/10.5006/1.3292068
  28. S. Papavinasam, R.W. Revie, M. Attard, A. Demoz, K. Michaelian, Corrosion, 2003, 59(12), 1096-1111. https://doi.org/10.5006/1.3277529
  29. M. Bazzaoui, J.I. Martins, S.C. Costa, E.A. Bazzaoui, T.C. Reis, L. Martins, Electrochim. Acta, 2006, 51(21), 4516-4527. https://doi.org/10.1016/j.electacta.2006.01.002
  30. Y.H. Kim, Y.S. Kwon, M.Y. Shon, M.J. Moon, J. Electrochem. Sci. Technol, 2018, 9(1), 1-8. https://doi.org/10.5229/JECST.2018.9.1.1
  31. M.C.S.S. Macedo, I.C.P. Margarit-Mattos, F.L. Fragata, J.-B. Jorcin, N. Pebere, O.R. Mattos, Corros. Sci, 2009, 51(6), 1322-1327. https://doi.org/10.1016/j.corsci.2009.03.016
  32. M. Sababi, J. Pan, P.-E. Augustsson, P.-E. Sundell, P.M. Claesson, Corros. Sci, 2014, 84, 189-197. https://doi.org/10.1016/j.corsci.2014.03.031
  33. G.S. Sajadi, S.M.A. Hosseini, M.J. Bahrami, M. Shahidi, Prog. Color Colorants Coat, 2017, 10, 205-216.
  34. N. Um, T. Hirato, Mater. Trans., 2013, 54(5), 713-719. https://doi.org/10.2320/matertrans.M-M2013802
  35. M.F. Montemor, R. Pinto, M.G.S. Ferreira, Electrochim. Acta, 2009, 54(22), 5179-5189. https://doi.org/10.1016/j.electacta.2009.01.053
  36. D. Seifzadeh, E. Golmoghani-Ebrahimi, Surf. Coat. Tech, 2012, 210, 103-112. https://doi.org/10.1016/j.surfcoat.2012.08.073