Fig. 1. Sketch of the droplet on a horizontal surface.
Fig. 2. Droplet movement on a plate by exciting flexural waves.
Fig. 3. Experimental apparatus of the fuel cell system.
Fig. 4. Schematic of the unit-cell experiment setup.
Fig. 5. Schematic of the unit-cell channel shape.
Fig. 6. Appearance of the piezo-actuator.
Fig. 7. Attached piezo-actuators at end of bipolar plate.
Fig. 8. Cell performances with different frequencies.
Fig. 9. Effect of flexural wave on cell performances with different RH. (a) 35%, (b) 50%, (c) 75%, and (d) 90%.
Fig. 10. Voltage as a function of time of different RH. (a) RH 35%, CD 1.6, (b) RH 50%, CD 1.6, (c) RH 75%, CD 1.6, and (d) RH 90%, CD 1.6.
Fig. 11. Effect of flexural wave on cell performances with RH 90% and 1.5 stoichiometry.
Fig. 12. Voltage as a function of time of RH 90% and stoichiometry.
Fig. 13. Voltage as a function of time of RH 90%, 1.5 stoichiometry and cathode inlet temperature 50℃.
Fig. 14. Power as a function of time of RH 90%, 1.5 stoichiometry and cathode inlet temperature 50℃ .
Table 1. Specifications of the measurement devices
Table 2. Experimental condition
References
- S. Escribano, J. F. Blachot, J. Etheve, J. Power Sources 2006, 156(1), 8-13. https://doi.org/10.1016/j.jpowsour.2005.08.013
- J. H. Lin, W. H. Chen, Y. J. Su, T. H. Ko, Fuel 2008, 87(12), 2420-2424. https://doi.org/10.1016/j.fuel.2008.03.001
- X. Li, I. Sabir, Int. J. of Hydrogen Energy 2005, 30(4), 359-371. https://doi.org/10.1016/j.ijhydene.2004.09.019
- S. W. Perng, H. W. Wu, Appl. Energy 2010, 87(4), 138601399.
- F. Liu, G. Lu, C. Y. Wang, J. of Membrane Sci. 2007, 287(1), 126-131. https://doi.org/10.1016/j.memsci.2006.10.030
- P. Karthikeyan, R. J. Vasanth, M. Muthukumar, Int. J. Hydrogen Energy 2015, 40(13), 4641-4648. https://doi.org/10.1016/j.ijhydene.2015.01.175
- S. H. Han, N. H. Choi, Y. D. Choi, Int. J. Hydrogen Energy 2014, 39(6), 2628-2638. https://doi.org/10.1016/j.ijhydene.2013.08.063
- K. Jiao, J. Bachman, Y. B. Zhou, J. W. Park, Appl. Energy 2014, 115, 75-82. https://doi.org/10.1016/j.apenergy.2013.10.026
- Y. Xu, L. Peng, P. Yi, X. Lai, Int. J. Hydrogen Energy 2016, 41(9), 5084-5095. https://doi.org/10.1016/j.ijhydene.2016.01.073
- S. S. Arun, R. T. K. Raj, P. Karthikeyan, Energy 2016, 113, 558-573. https://doi.org/10.1016/j.energy.2016.07.079
- J. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1991.
- A. Torkkeli, J. Saarilahti A. Haara, 14th IEEE Int. Conf. on Micro Electro Mech. Systems, 2001, 475-478.
- M. Washizu, IEEE Trans. Ind. Appl. 1998, 34(4), 732-737. https://doi.org/10.1109/28.703965
- R. J. Hunter, Foundations of Colloid Science, Oxford University Press, New York, 2001.
- J. Scortesse, J. F. Manceau, J. Bastien, J. of Sound and Vibration, 2002, 254(5), 927-938. https://doi.org/10.1006/jsvi.2001.4137
- S. Biwersi, J. F. Manceau, F. Bastien, J. Acoust. Soc. Am., 2000, 107(1), 661-664. https://doi.org/10.1121/1.428566
- S. Alzuaga, J. F. Manceau, S. Ballandras and F. Bastien, World Congress on Ultrasonic, Paris, 2003, 951-954.
- K. Lyklema, Fundamentals of Interface and Colloid Science, Academic Press, New York, 1995