DOI QR코드

DOI QR Code

Development of a Colorimetric Rapid Detection Method for Organophosphorus and Carbamate Pesticides using Gold Nanoparticle Aggregation Principle

금 나노 입자 응집 원리를 이용한 유기인계와 카바메이트계 비색-신속 농약검출법 개발

  • Kim, Hyo-In (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Lee, Jeong-Eun (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Kim, Sol-A (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Moon, Hyo-Yeong (Apteasy MJ inc., BI center) ;
  • Cho, Sung-Rae (Jinhae Branch, Korea Confectionery association) ;
  • Shim, Won-Bo (Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University)
  • 김효인 (경상대학교 응용생명과학부) ;
  • 이정은 (경상대학교 응용생명과학부) ;
  • 김솔아 (경상대학교 응용생명과학부) ;
  • 문효영 (압티지엠제이(주)) ;
  • 조성래 (대한제과협회 진해지부) ;
  • 심원보 (경상대학교 농화학식품공학과)
  • Received : 2019.04.04
  • Accepted : 2019.06.10
  • Published : 2019.06.30

Abstract

A colorimetric rapid detection method based on acetylcholinesterase (AChE) was developed for the analysis of organophosphorus (OP) and carbamate (CB) pesticides. The AChE catalyzes acetylthiocholine into thiocholine having (-) and (+) charges, and the (+) charge results in gold nanoparticle (GNP) aggregation. The in-activation of AChE by OP and CB has been well known. In order to optimize the colorimetric method, optimal dilution times of commercial serum containing AChE, diameter of GNP, and concentration of acetylthiocholine were tested as a key parameter. The colorimetric detection limits of the method were 7.5 ng/mL for both dimethyl amine and carbofuran pesticides in 60% ethanol. No cross-reaction to other chemicals, such as aflatoxin B1 and ochratoxin A, which can be contaminated with pesticides in agricultural products, was observed. Recoveries from lettuce, sesame leaf, and cabbage lettuce spiked with known concentrations of dimethyl amine and carbofuran were found to be ranged from 83.85 to 133.16%. These results indicated that the colorimetric rapid method based on AChE can be a useful tool for the sensitive, specific, rapid, and accurate detection of OP and CB pesticides in fresh vegetables.

본 연구에서는 시판되고 있는 혈청 내 AChE가 acetylthiocholine과 반응하여 GNP에 aggregation 일으키는 원리를 이용하여 신선채소 농산물 중에 저농도 농약을 신속하고 간편하게 분석할 수 있는 비색-신속 농약 검출법을 개발하는 연구를 수행하였다. 먼저 비색-신속 농약 검출법의 최적화를 위해 GNP 입자의 크기에 따른 응집정도를 확인하여 15~20 nm 직경의 GNP를 선정하였고, 혈청의 희석배수와 acetylthiocholine의 농도를 확인하여 GNP 응집 차이가 가장 큰 혈청 1000배 희석과 acetylthiocholine 1 mM을 최적화 조건으로 선정하였다. 비색-신속 농약 검출법의 평가를 위해 최적화된 비색농약분석법을 이용하여 유기인계 농약은 dimethyl amine으로 카바메이트계 농약은 carbofuran으로 민감도를 분석한 결과 모두 7.5 ng/mL까지 검출이 가능한 것으로 확인되었으며 이는 기존의 비색-신속 농약 검출법과 비교했을 때 높은 민감도와 특이성을 나타내었다. 농약 이외에 화학물질인 곰팡이독소 등에 대한 반응성은 확인되지 않아 높은 특이성을 나타내었다. 또한 상추, 깻잎, 양상추에 대한 시료 전처리법을 확립하고 임의로 오염시킨 3종(상추, 깻잎, 양상추)의 농산물에 대해서 회수율을 확인한 결과유기인계와 카바메이트계 농약을 83.85~133.16% 정도의 회수율이 확인되었다. 이상의 결과 볼 때 본 연구에서 개발한 비색-신속 농약 검출법을 이용한다면 시판 농산물의 잔류농약을 신속하고 민감도 높게 검출할 수 있을 것으로 판단된다.

Keywords

References

  1. WHO(World Health Organization). Definition of Pesticide. Available from: https://www.who.int/topics/pesticides/en/. Accessed February 12 (2019).
  2. Chung, S.P., Roh, H.K.:Antidote for organophosphate insecticide poisoning:atropine and pralidoxime, J. Korean. Med. Assoc., 56(12), 1057-1066 (2013). https://doi.org/10.5124/jkma.2013.56.12.1057
  3. Martin, H.: Pesticides Manual, British Crop Protection Council, London, UK pp. 30-100 (1968).
  4. Stoytcheva, M.: Pesticides in the Modern World - Trends in Pesticides Analysis, Intech Open, London, pp. 3-10, (2011)
  5. Ware, G.W.: The pesticide book, 5th Ed. CAB International, Fresno, pp. 212-260 (2000).
  6. Choi, S.Y.: food contamination, 1st Ed. Ulsan university press.Ulsan, pp. 158-250 (1994).
  7. Lee, Y.D.: The problem is 'recognition / prejudice' rather than actual safety, Agro. news mag., 27, 22-25 (2006).
  8. Monitoring of Pesticide Residues inEnvironmental-friendly Agricultural Products and TheirSafety Assessment: National Institute of Agricultural Sciences (2012).
  9. Kim, H.Y., Lee, K.B.: Content of pesticide contaminants content in organic vegetable, J. Food Process Pres., 11, 57-62 (2004).
  10. Monitoring of Pesticide Residues inAgro-Livestock Products: Ministry of Food and Drug Safety, (2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016).
  11. Kim, J.G.: Analysis of pesticide contaminants in food, Kor. J. Env. Hlth. Soc., 19, 90-93 (1993).
  12. Available from http://www.nongsaro.go.kr/portal/portalMain, Accessed Feb. 06 (2019).
  13. Alvarez, M., Calle, A., Tamayo, J., Lechuga, L.M, Abad, A., Montoya, A.: Development of nanomechanical biosensors for detection of the pesticide DDT, Biosensors and Bioelectronics, 18, 649-653 (2003). https://doi.org/10.1016/S0956-5663(03)00035-6
  14. Firdoz, S., Ma, F., Yue, X., Dai, Z., Kumar, A., Jiang, B.: A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water, Talanta, 83, 269-273 (2010). https://doi.org/10.1016/j.talanta.2010.09.028
  15. Clara, F.C., Zhi., W., Louise, U., Pommier, J.J., Montury, M.:Focused Microwave Assistance for Extracting Some PesticideResidues from Strawberries into Water before Their Determinationby SPME/HPLC/DAD, J. Agric. Food Chem., 49, 5092-5097 (2001). https://doi.org/10.1021/jf010519u
  16. Bravo, R., Driskell, W.J., Whitehead Jr., R.D., Needham, L.L., Barr, D.B.: Quantitation of Dialkyl Phosphate Metabolites of Organophosphate Pesticides in Human Urine UsingGC-MS-MS with Isotopic Internal Standards, J. Anal. Toxicol., 26, 245-252 (2002). https://doi.org/10.1093/jat/26.5.245
  17. Chan, P.Y., Sum, K.W, Cheung, K.Y., Glatz, F.C., Sanderson, J.E., Hempel, A., Lehmann, M., Renneberg, I., Renneberga, R.: Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein, J. Immune. Meth., 279, 91-100 (2003). https://doi.org/10.1016/S0022-1759(03)00243-6
  18. Li, Y., Schluesener, H.J., Xu, S.: Gold nanoparticle-based biosensors, Gold Bulletin, 43, 29-41 (2010). https://doi.org/10.1007/BF03214964
  19. Hong, S.W., Choi, L.: Automatic flower recognition using smartphones, JCSE., 38, 462-465 (2011).
  20. Frens, G.: Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature, 241, 20-22 (1973).
  21. Availablefrom https://play.google.com/store/apps/details?id=com.vistechprojects.colormeterfree,Accessed Feb. 21 (2019).
  22. Availablefrom https://www.koreacpa.org/bbs/board.php?bo_table=2_5, Accessed May. 21 (2019).
  23. Thomas, T.: The toxicity of methanol, Life Sciences, 48, 1031-1041 (1991). https://doi.org/10.1016/0024-3205(91)90504-5
  24. Codex alimentarius international food standard: Guidelines on performace criteria for methods of analysis for the determination of pesticide residues in food and feed, adopted in 2017.