References
- Ali, S.Z., Dey, S., 2017. Origin of the Scaling Laws of Sediment Transport. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2197). https://doi.org/10.1098/rspa.2016.0785
- Anderson, T., Jackson, R., 1967. A Fluid Mechanical Description of Fluidized Beds: Equations of Motion. Industrial & Engineering Chemistry Fundamentals, 6(4), 527-539. https://doi.org/10.1021/i160024a007
- Baykal, C., Sumer, B.M., Fuhrman, D.R., Jacobsen, N.G., Fredsoe, J., 2017. Numerical Simulation of Scour and Backfilling Processes around a Circular Pile in Waves. Coastal Engineering, 122, 87-107. https://doi.org/10.1016/j.coastaleng.2017.01.004
- Cundall, P.A., Strack, O.D., 1979. A Discrete Numerical Model for Granular Assemblies. Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Dargahi, B., 1989. The Turbulent Flow Field around a Circular Cylinder. Experiments in Fluids, 8(1-2), 1-12. https://doi.org/10.1007/BF00203058
- Goniva, C., Kloss, C., Deen, N.G., Kuipers, J.A., Pirker, S., 2012. Influence of Rolling Friction on Single Spout Fluidized Bed Simulation. Particuology, 10(5), 582-591. https://doi.org/10.1016/j.partic.2012.05.002
- Hur, D.S., Jeon, H.S., 2011. Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater. Journal of The Korean Society of Civil Engineers, 31.
- Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S., 2012. Models, Algorithms and Validation for Opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, an International Journal, 12(2-3), 140-152. https://doi.org/10.1504/PCFD.2012.047457
- Koch, D.L., Hill, R.J., 2001. Inertial Effects in Suspension and Porous-media Flows. Annual Review of Fluid Mechanics, 33(1), 619-647. https://doi.org/10.1146/annurev.fluid.33.1.619
- Li, J., Tao, J., 2018. CFD-DEM Two-Way Coupled Numerical Simulation of Bridge Local Scour Behavior under Clear-Water Conditions. Transportation Research Board 97th Annual Meeting (No. 18-05939), Washington, DC, USA.
- Lim, B.G., Son, M., 2016. Study on Applicability of Fractal Theory to Cohesive Sediment in Small Rivers. Journal of Korea Water Resource Association, 49, 887-901. https://doi.org/10.3741/JKWRA.2016.49.10.887
- Pang, A.L.J., Skote, M., Lim, S.Y., Gullman-Strand, J., Morgan, N., 2016. A Numerical Approach for Determining Equilibrium Scour Depth around a Mono-pile Due to Steady Currents. Applied Ocean Research, 57, 114-124. https://doi.org/10.1016/j.apor.2016.02.010
- Park, S., Song, S., Whang, H. Joung, T., Shin, Y., 2017. Parametric Study on Scouring around Suction Bucket Foundation. Journal of Ocean Engineering and Technology, 31(4), 281-287. https://doi.org/10.26748/KSOE.2017.08.31.4.281
- Roulund, A., Sumer, B.M., Fredsoe, J., Michelsen, J., 2005. Numerical and Experimental Investigation of Flow and Scour around a Circular Pile. Journal of Fluid Mechanics, 534, 351-401. https://doi.org/10.1017/S0022112005004507
- Schmeeckle, M.W., 2014. Numerical Simulation of Turbulence and Sediment Transport of Medium Sand. Journal of Geophysical Research: Earth Surface, 119(6), 1240-1262. https://doi.org/10.1002/2013JF002911
- Sumer, B.M., Fredsoe, J., 2002. The Mechanics of Scour in the Marine Environment. 17, World Scientific Publishing Company, Singapore.
- Sun, R., Xiao, H., 2016. CFD-DEM Simulations of Current-induced Dune Formation and Morphological Evolution. Advances in Water Resources, 92, 228-239. https://doi.org/10.1016/j.advwatres.2016.03.018
- Trygsland, E., 2015. Numerical Study of Seabed Boundary Layer Flow around Monopile and Gravity-based Wind Turbine Foundations. Master's Thesis, NTNU, Trondheim, Norway.
- Whitehouse, R., 1998. Scour at Marine Structures: A Manual for Practical Applications. Thomas Telford, London.
- Xu, S.L., Sun, R., Cai, Y.Q., Sun, H.L., 2018. Study of Sedimentation of Non-cohesive Particles via CFD-DEM Simulations. Granular Matter, 20(1), 4. https://doi.org/10.1007/s10035-017-0769-7
- Yang, J., Low, Y.M., Lee, C.H., Chiew, Y.M., 2018. Numerical Simulation of Scour around a Submarine Pipeline Using Computational Fluid Dynamics and Discrete Element Method. Applied Mathematical Modelling, 55, 400-416. https://doi.org/10.1016/j.apm.2017.10.007